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1. LECTURE 1: 2023.9.5

Basic conventions: all rings have 1, 1 could be 0 but only when R = {0}. Ring homomorpisms send
1to 1.

If there is a ring morphism f : R — S, call S an R-algebra. The data of a R-algebra includes the
structural morphism f. Examples includes the inclusion Z — Q, or the quotient ring R — R/I. A
basic example is the polynomial algebra R[z1, - - - ,x,] over a ring R, and the formal power series
R[z1,--- ,x,]. A short hand notation is ! where I = (a1,--- ,a,) is a tuple in Z'}, and z! means
z]* - - -z, The notation |I| means ), a;. So another way of writing elements in R[x1, - - , ;] is

ZPd, where P; = Z rrx!
d

|T|=d
grouping together homogenous of degree d parts.

Definition 1.1. Let S, S2 be R algebras. A ring morphism f : S; — Ss is an R-algebra morphism
if f commutes with the structural homomorphisms.

For example, if J is an ideal in S and S is an R-algebra, then S/J is also an R-algebra.

Suppose S is an R-algebra. Let 51, - ,s, € S. Then we have an R-algebra homomorphism
Rlzy, - ,zp] — S

by evaluating at 51, - - , sp.

Basic fact: every R-algebra homomorphism from e : R[z1,--- ,z,] — S is of this form. (Take s; to
be e(z;).) So there is a bijection Hom(R[z1, - - - , ], S) = S™ as sets.

This doesn’t work for R[z1,--- ,x,] since one can’t evaluate a power series unless there is some
notion of convergence.

Definition 1.2. If an R-algebra S is isomorphism as R-algebras to R[z1,-- ,z,]/I, thensay S is a
finitely generated R-algebra. If I is a finitely generated ideal, then say S is finitely presented.

The second basic object is R-modules.

Definition 1.3. M is an R-module if (M, +) is an abelian group, and - : R x M — M is a ring
action.

Definition 1.4. N C M is an submodule if it is a subgroup and closed under action of R. The
quotient M /N inherits the structure of a R-module.

Definition 1.5. A function f : M; — M> is an R-module homomorphism if it is a homomorphism
of abelian groups, and f(rm) = rf(m) forallr € R and m € M;.

Given a homomorphism f, the kernel, the image, and the cokernel are all naturally R-modules. f
is injective if the kernel is 0, and f is surjective if the cokernel is 0. f is a isomorphism if and only
if f is bijective, which implies f~! is also a homomorphism, hence also an isomorphism.

Example 1.1.
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(1) If k is a field, then a k-module is a k-vector space.
(2) An R-algebra is naturally an R-module.
(3) A Z-module is the same thing as an abelian group.
(4) An R-submodule of R is an ideal.
(5) Free modules R™
(6) Let X be any set and M an R-module. The set of all functions
MY ={f:X - M}
is an R-module under pointwise addition and multiplication.
(7) Direct sums/products. Let My, M> be R-modules. The direct sum is
My @® My = {(m1,mz) | m; € M;}

More generally, let A be a set (might be infinite), and suppose M, is a R-module for all
a € A. Define the direct product
1] 2.

a€cA

to be the set of functions f : A — [[,c4 Mq such that f(a) € M,. The addition and
multiplication by r is pointwise. The direct sum is a submodule

s | pUA
acA acA

consists of functions f such that f(a) = 0 for all but finitely many «’s.

Another basic object is ideals. Let R be a fixed ring. Let A be a set and I, be an ideal of R for all
a € R. The intersection
Ak

a€cA

is an ideal, and it is the largest ideal contained in all the I,,’s.

Let I, J be ideals in R. The ideal product is

N
1J = {st”riel,siEJ}

=1

Itis obvious that /.J C INJ and in general they are different. For examples, in Z we have (n)N(n) =
(n), but (n)(n) = (n?). It is easy to check that (IJ)K = I(JK) and I.J = JI. There is no way to
take an infinite product of ideals.

The ideal sum is
I+J={r+s|rel,seJ}

We see that I, J C I + J, and it is the smallest ideal containing I and .J. The union I U J is almost
never an ideal, and it is only when one ideal is contained in the other.
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It is possible to sum up infinitely many ideals. Suppose we have ideals I,,a € A. The sum is
defined to be

ZI = {Z Ta | Ta € In,rq = 0 for all but finitely many a} .

Definition 1.6. Given r € R, the set of all multiples of r, denoted by (r), is the principal ideal
generated by r. Given ry,--- , 7 € R, define the ideal generated by 71, - - , ) to be

k
(ri,- 1K) = {ZthiGR} = (r) + -+ (%)
i=1

Infinitely generated ideal is defined to be the set of all finite sums, or the infinite sum of principal
ideals.

These constructions have analogues for R-modules. Fix an R-module M. Suppose there is a collec-
tion M, of submodules. One may define the intersection and the sum, but in general one can’t take
the product. However, if I is an ideal in R, and N a submodule in M, one can form the product

n
IN = {Zrimi\nel,meM}.

=1

Let R be aring. A unitin R is an element with an multiplicative inverse. R* is the set of all units,
and it is a group under multiplication. A zero divisor in R is an r € R such that rs = 0 for some

s # 0.
Definition 1.7. Ris a domain if R # {0} and the only zero divisor is 0.

Example 1.2.
(1) A field is a domain.
(2) A subring of a domain is a domain.
(3) If R is a domain, then R]z] is also a domain.
Definition 1.8. Anideal P C Ris a prime ideal if P # R, and rs € P impliesr € P or s € P for all
r,s € R.
Fact: P is a prime ideal if and only if R/P is a domain.
Observation: Suppose f : R — S is a ring homomorphism, and () C S is a prime ideal. Then

f~YQ) is a prime ideal in R.

Proof. Let f be the composition R — S — S/Q. The kernel of fis {r € R | f(r) € Q} = f~1Q).
The induced homomorphism R/f~1(Q) — S/Q is injective, so R/f~1(Q) is isomorphic to some
subring of S/Q, a domain. Hence R/f~!(Q) is a domain, so f~1(Q) is a prime ideal. [
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2. LECTURE 2: 2023.9.7

Definition 2.1. A maximal ideal M in a ring R is an ideal not equal to R, and if J is an ideal in R
and M CJCR,thenJ =MorJ =R.

M is maximal if and only if R/M is a field. If Ris a ring, I is an ideal, then there is a 1-1 correspon-
dence between ideals J containing I and ideals of R/I. Hence M is a maximal ideal in R if and
only if K = R/M is non-zero and has no proper non-trivial ideals, so it is a field.

Theorem 2.2. Let R be a ring and I a proper ideal. Then there exists a proper ideal M containing I.
Proof. Zorn’s lemma. [
Corollary 2.3. If R # {0}, there exists a maximal ideal in R.

Proof. Apply the theorem to I = {0}. |

Corollary 2.4. If R # {0} and r € R, then r is a unit if and only if r is not contained in any maximal
ideal.

Proof. If r is not a unit, we can apply the theorem to I = (r) to get a maximal ideal containing . W

We move on to the topic of radical of ideals. If I is an ideal in R, we defined
I ={r € R| there exists n such that " € I}

The radical of 0 is the set of nilpotent elements in R.
Lemma 2.5. The radical of an ideal is an ideal of R. Taking radical is an idempotent operation.

Proof. Letr,s € rad(I). Then exists a n such that 7", s™ € I. We can expand

(r+s)V = ZN: (27) rhsh =k

k=0
sofor N > 2n — 1, each termisin I. [ |

Theorem 2.6. If I # R, then the radical of I is the intersection of all prime ideals containing I.

Proof. If r € rad(I), and P is a prime ideal containing I, then " € I C P, which implies € P.
Hence rad(I) C NposP.

Now we must show that if » ¢ rad(/), then there exists a prime ideal P containing / such that
r ¢ P. Under this assumption, we have that 7" ¢ I for any n. Let X be the set of all ideals .J such
that I C J and ™ ¢ J for any n. Note that X is not empty since I is in X. Let M be a maximal
element in this set X. We claim M is prime. To see this, suppose a, b are elements not in M. Then
by the maximality of M, the ideal generated by a and M contains " and the ideal generated by b
and M contains r"™. Therefore their product (ab, M) contains """, This shows ab ¢ M, so M is a
prime ideal. [
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Proposition 2.7. The Jacobson radical of a ring R is the set {r € R | 1 + rs is a unit for any s € R}.

Proof. Suppose 1+ rs is not a unit for some s. Then there is a maximal ideal m containing 1 + rs. If
m also contains r, then m contains 1 + rs — rs = 1, which is impossible. So ¢ m. This shows that
the Jacobson radical is contained in the proposed set.

Now assume 1 + rs is a unit for any s € R. Suppose r is not in m for some maximal ideal m. We
know that the ideal generated by r and m is the entire ring, so there exists s € R and ¢t € m such
that sr +¢ = 1. But then ¢t = 1 — sr is a unit in m, a contradiction. Therefore r is in the Jacobson
radical. |

3. LECTURE 3: 2023.9.12
Theorem 3.1. Let R be a Noetherian domain. Then the following are equivalent:
(1) Risa UFD

(2) if r € R non-zero non-unit, then r is irreducible if and only if (r) is a prime ideal
Theorem 3.2. If R is a UFD, then R[z]is a UFD.

Proof. Let K be the field of fractions of R. We will show that the irreducible elements in R[z] are
either r € R irreducible in r, or f € R[x] primitive and f is irreducible in K|z].

Recall that f € R[z] non-zero is called primitive if the ged of its coefficients is equal to 1. In general,
if f # 0, define c(f), the content of f, to be the gcd of its coefficients. So for any f # 0, we can write
f = c(f)fo where f is primitive.

Lemma 3.3. If f, g are primitive polynomials in R[z|. If f = ag with a € K*, then o € R*.

Proof. Let @ =r/s, so then sf = rg. The content of sf is s, and the content of rg is , which means
r is an associate of s, s0 & = r/s is a unit in R. [ |

Lemma 3.4. If f € k[x] is non-zero, then there exists « € K™ such that af € R[x] and «f is primitive.

Proof. Let f = Z?:o a;z' where a; = r;/s;. Let s be the product of all s;. Then sf € R[z]. Now
a = s/c(sf) does the job. [ |

Lemma 3.5 (Gauss lemma). If f, g € R[x]| are primitive, then fg is primitive.

Proof. Suppose not. Then there exists a r € R irreducible such that r divides all coefficients of fg.
Now work in the ring R/(r). The ideal (r) is a prime ideal since R is a UFD, so R/(r) is a domain.
Now we have fg = 0in R/(r), so f = 0 or g = 0. This means r divides f or g, contradicting the
hypothesis that both f and g are primitive. [ |

Proposition 3.6.

(1) If g € R|z] is primitive, f € R[z], then g|f in R[x] if and only if g| f in K|x].
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(2) if f € R[z] primitive and f = gh in K], then there exists gy = g, ho = Bh, o, f € K such that

90, ho are primitive and f = gohy.

Proof. For (1), suppose f = gh with h € K[z]. We may assume f is primitive. There exists some
a € K* such that ah = hyg is primitive. Then of = gho which is primitive by the Gauss lemma.
Now by Lemma, we get that o € R, so h = ahy € R|[z].

For (2), just choose «, /3 as suggested and observe the polynomials are primitive. n

Corollary 3.7.
(1) If f € R[z] is primitive and f is irreducible in K x|, then f is irreducible in R|x].

(2) if r € Ris irreducible, then r is irreducible in R[z].

This identifies a collection of irreducible elements in R|[z].

Now we claim that any f € R[z] not 0 or unit can be factored into a product r; - - - 7491 - - - g» such
that r; is irreducible in R and g; are primitive and irreducible in K[z]. Indeed, write f = ¢(f)fo
with fy primitive, then r; - - - 4 is just the factorization of ¢(f) in R. Then in K[z], we can factor fj
into a product of irreduicbles in K [z], but by part (2) of the Proposition, this gives a factorization
in g;’s primitive in R[z| and irreducible in K [z].

The uniqueness of such factorizations follows from the uniqueness of factorizations in R and K |[z].

|
4. LECTURE 4: 2023.9.14
We move on to affine algebraic geometry, which is the study of the polynomial ring k[z1, - - , xy]
where £ is an algebraically closed field. Define A} to be the affine n-space over k, which is just k"
as a set (or vector space). We think of k[z1, - - - , z,] as the ring of functions on A}.
Given fy,---, fn € k[z1, -+, x,), define
Vi, In) ={z e AL [ filz) = --- = fn(z) = 0}
In generate, one can define V' (A) for any subset A C k[x1,--- ,z,] to be the set of all points on

which every polynomial in A vanishes. It is easy to see that if I is the ideal generated by A, then
V(I)=V(A).

The Hilbert Basis Theorem says every ideal in k[x1, - - - , 2] is finitely generated, so there is no gain
in considering infinite subset A. We will prove this theorem.

Theorem 4.1. If R is Noetherian, then R[z] is also Noetherian.

This immediately implies R[z1,- - ,z,] is Noetherian if R is. And if S is a finitely generated R-
algebra for R Noetherian, then S is Noetherian and finitely presented. This is because S is realized
as R[xy,- - ,zy]/I, but now we know R[z1, - - , x,] is Noetherian and thus I is finitely generated,
and as a quotient S is also Noetherian.
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proof of theorem. Let I be an ideal in R[z|. Define

k
Ik:{TER]EIf:ZrkxkEI,r:rk}
i=0
which is the set of all leading coefficients of polynomials of degree at most k (could be 0). It is clear
that [ is an ideal. In particular, for any f € I, xf € I, so any r € I, is also in ;1. Hence I is an
increasing sequence of ideals, so R Noetherian implies I}, = Iy for some NV and all £ > N.

For all £ < N, choose ggk), e géi) € I polynomials of degree k such that their leading coefficients
generates I;, (I}, is finitely generated in R).

We claim that I is generated by g™, 0 <k < N. Itis clear that (ggk)) C I since all the ¢\*) are in I.

Conversely, let f € I. We proceeci by induction on the degree d of f. If d = 0, then f € lI NR = I,

- L 0),
so f is a linear combination of gl-( Vs,

For the inductive step, if d < IV, then the leading coefficient of f is in I, so there exists some s; € R
such that @
f— Z Si9;
i

@) can produce the leading coefficient. Then f is a linear

has degree less than d, because the g,
combination of all gi(k)’s by the inductive hypothesis.

If d > N, the leading coefficient of f is in Iy, which is again produced by g(N) ’

- st

which is a polynomial of smaller degree to finish. u

s. Consider

Definition 4.2. A closed algebraic subset of A} is a subset of the form V(1) for some ideal I in
klxy, -+, xp].

Lemma 4.3.
(1) I C Iy implies V (I2) C V(1)
(2) V(0O)=Aland V(1) =@
(3) V(X la) = NaV (1)
(4) V(IJ)=V(INnJ)=V(I)UV(J).
Proof. The proof is just set theory, except for the inclusion V(IJ) C V(I) N V(J). To see this,

suppose x ¢ V(I) NV (J), so there exist f; € I, fo € J such that fi(z) # 0 and fa(z) # 0. Then
f1f2 doesn’t vanish at z, and fi fo € I.J. This means V(I.J) C V(I) NV (J). [ |

This lemma shows that the algebraic sets form the closed sets of a topology. This is the Zariski
topology.

Given any X C A}, define I(X) to be the set of all polynomials that vanishes on all of X. This is
an ideal.
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Lemma 4.4.

(1) X1 C Xoimplies I(X2) C I(X7)

(2) X CV{I(X))

(3) I CI(V()) for any ideal I in k[xq,- -, xy]

(4) 1(A}) = (0).

Proof. Definitions. |

Lemma 4.5. V(I(X)) is the smallest closed subset of A} containing X, i.e. the Zariski closure of X. In
particular, if X = V(1) is closed, then V (I1(X)) = X.

Proof. Of course V(I(X)) is closed and X C V(I(X)). If X ¢ V(J) =Y, thenJ C I(Y) =
I(V(J)) CI(X). Then V(I(X)) Cc V(J) =Y. [

The question in the opposite direction is what is I(V(I)). Clearly rad(I) is contained in I(V'(I))
since if f € rad(I), then f¥ € I, so f¥(x) = 0 for every x € V(I). Hence f(z) = 0 for every
x e V(I),so feI(V(I)). The Nullstellensatz shows this inclusion is an equality.

A special case is the following: if m is a maximalideal of k[z1, - - - , z;,], then thereexists ay,--- ,a, €
k such thatm = (z; —ay,- -+ , 2, — a,). In other words, m is the kernel of the evaluation map at the
point (a, -, ap).

Conversely, assuming the Nullstellensatz, we have V' (m) # &, so there is some pointa = (a1, - , ay)

such thata € V(m), som C I({a}). By maximality they are equal.

We already know that k[z1, - - - , z,,] is a UFD, and the non-zero minimal prime ideals are generated
by a single irreducible polynomial f. We call V'(f) is an irreducible hypersurface. For any f, by
factoring it into irreducibles f = fi --- fx, weget V(f) = V(f1)U---UV(fn), so every hypersurface
is a union of irreducible hypersurfaces.

The operations V' and I give a one-to-one correspondence between affine algebraic sets and radical
ideals of k[z1,- - ,zy].

Let X be a setin A}. What are the functions on X? They come from function on A}, but two such
function are the same on X if their difference vanishes on X. Thus we defined the affine coordinate
ring of X, A(X), tobe k[z1,--- ,x,]/I(X). We see that A(X) is reduced.

Lemma 4.6. Maximal ideals of A(X) are in bijection with points of X.

Proof. Maximal ideals of A(X) are in bijection with maximal ideals of k[xy,--- ,z,] containing
I(X). Those are of the form n = (z; — a1, -,z — ay), and I(X) C nmean (ag, - ,ay) is in
X. |
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5. LECTURE 5: 2023.9.19

Definition 5.1. Let X be a topological space. X is irreducible if when X = X; U X5 a union of
closed subsets, then X = X; or X = X». Equivalently, every two non-empty open subsets have a
non-empty intersection.

Proposition 5.2. Let X = V(I be a closed subset of A}}. X is irreducible if and only if 1(X) is prime.

Proof. If X isnotirreducible then we can write X = X;UX, where X; # X. So there exist functions
fi that vanishes on X; butnot on X, i.e. f; ¢ I(X). But f; f> vanishes on X, so I(X) is not a prime
ideal.

If I(X) is not a prime ideal, then there exists f1, fo notin I(X) but f; fo € I(X). This implies that
X C V(fi1f2)but X is not contained in V'(f;). Now take X; = X N V(f;), which is a proper closed
subset of X. Thus X is not irreducible. [

By the correspondence, X is irreducible if and only if X = V(I(X)) = V(p) where p is a prime
ideal.

Example 5.1.
(1) A} isirreducible since A} = V(0)

(2) A point is irreducible since it is the vanishing locus of a maximal ideal.
Definition 5.3. X is a (affine k—)variety if X is irreducible closed subset of A}.

Equivalently, I(X) is a prime ideal, which is equivalent to A(X) being a domain.
Remarks about the Zariski topology:

(1) On A}, the Zariski topology is the finite complement topology, i.e. the closed sets are &,
finite sets, and A}. As topological spaces, this only depends on the cardinality of .

(2) If n,m > 0, of course as sets AZJ”” = A} x A}'. But the topologies are never the same, i.e.
A7 always has more open sets than A} x A} with the product topology.

Let Dy = A} — V(f), i.e. the non-vanishing locus of a polynomial f. This is called a basic open
set. It is easy to see that DynNDy= D¢y, and

U D, = AR = V(fa: € A).
acA
In particular, if { Dy, } cover the whole space if and only if { f, } generates the unit ideal. This is the

same as saying there exist fy,, - , fa, that generates 1. This in turn means D(fa,), - , D(fay)
also cover the whole space. The space A} is quasi-compact.

More generally, any open set is a complement of some V' (1), and [ is finitely generated so it is finite
union of Dy’s. This shows that D’s are a basis of the Zariski topology.

The Zariski topology is not Hausdorff because every two open sets have non-empty intersection,
but it is true that points are closed.
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Definition 5.4. X is called a Noetherian topological space if every decreasing sequence of closed
subsets X1 D Xy D --- D X,, D --- is eventually constant.

The affine space A} is Noetherian since k[z1, - - - , x,] is. Any closed subset of A} is quasi-compact
and Noetherian.

We now turn to morphisms. A natural notion of a morphism from X to A} is just an element
in A(X). A morphism A} — A" is a m-tuple of polynomials F' = (fi,---, fm). We get a map
F*: k[y1, - ,ym] = klz1,--- ,x,] by g — g o F. This is specified by F*(y;) = f; which uniquely
determines a k-algebra homomorphism.

An ad hoc definition of a general morphism would be this: If X C A} and Y C AJ", a morphism
X — Yisafunction G : X — Y which is the restriction of a morphism F': A} — A}

Proposition 5.5. There is a bijection between morphisms G : X — Y and k-algebra homomorphisms
G*: A(Y) = A(X).

Proof. Startfromamorphism F': A} — A} suchthat F'(X) C Y. Thisdefinesa F* : k[y1,- -+ ,ym] —
klzy,--- ,2,]. We claim that F*(1(Y')) C I(X). Granting this claim, the map F** induces a map

k[yh T 7ym]/I(Y) - k[xh T 7xn]/I(X)
i.e. amap A(Y) — A(X). So now we prove the claim. Suppose F'(X) C Y. Then forall z € X,
F(z) = (fi(z), -+, fm(z)) € Y. So for every g € I(Y), we have g(fi(z), - ,gm(z)) = 0. This
means F*(g)(z) =0, so F*(g) € 1(X).

In the other direction, if ¢ : A(Y) = A(X) is a k-algebra homomorphism, then we have

k[ylf" 7ym] 77777 s k’[.ﬁUl,"' 7xn]

A(Y)

Let fi = ¢(yi). This uniquely defines a map F* : klyi, - ,ym] — k[z1,---,2,]. Now define
F(z) = (f ( )s-, fm(x)). We easily see that F*(I(Y)) C I(X). Namely, for any g € I(Y),
g(F(x))=0forallz € X,so F(z) € Y. Thismeans F(X) C Y. [ ]

This correspondence is contravariant, and the morphisms are continuous in the Zariski topology.
We obtained an equivalence of categories between the category of affine algebraic sets and the
category of reduced finitely generated k-algebras.

But the category of reduced finitely generated k-algebras has a lot of adjective. Our goal will be to
generalize to all commutative rings.

Given a commutative ring R, define Spec R to be the set of all prime ideals in R. Given a ring

morphism f : R — S, we get f* : Spec S — Spec R since the preimage of a prime ideal is prime. If
I C Ris anideal, define V(1) to be the set of prime ideals that contain /.

Lemma 5.6.
(1) If[l C I, then V(IQ) C V(Il)
(2) V(0) = Spec R. V(r) = @ if and only r is a unit.
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3) V(X Ia) = NaV(Ia).
(4) VIIJ)=V(INJ)=V(I)UV(J).

This proves the V' (I)’s form closed set of a topology. This is the Zariski topology.

Example 5.2. Suppose R is a PID (e.g. k[z],Z). If r is not a unit or 0, then V' (r) = V(r) U V(rn)
where rq, - - - , 7y are distinct irreducible factors of . Each V (r;) is a single point since (r;) is max-
imal. So the elements of Spec R are the irreducibles (mod R*) together with (0).

Note that in any domain R, (0) is not in any proper closed subsets, because that happens exactly
when (r) C (0) which means r = 0. Thus the closure of the point (0) = 7 is the entire Spec R. We
say that it is a generic point.

In the case R = k[z], Spec k[z] and the usual A} have the same open sets, because non-zero prime
ideals of k[z] are in bijection with point in A}. But there is an extra generic point = (0) that is in
every non-empty open set.

Example 5.3. Let R = k[z1, x5] with k = k. Prime ideals are (0), (f) for f irreducible, and (z; —
a1,y — az). The closed points are ones of the form (1 — a1, 2 — ag), and the generic point is (0).
The ones of the form ( f) have closure {(f)} union all the points lying on f.

6. LECTURE 6: 2023.9.21

Definition 6.1. A ring is graded is R = ®4>0R, as abelian groups such that RgR. C Riie. A
homomorphism of graded rings f : R — S is a ring homomorphism such that f(Rg) C S,.

Any ring R is trivially graded by setting R = Ry. The polynomial ring S = R[z1, - - , z,,] is graded
where S, is the set of homogenous degree d polynomials. The natural map R — S is a graded
homomorphism. In this grading, each z; has weight 1, but it is possible to assign different weights
to x;, and define the grading of a monomial to be the sum of all these weights.

For a general graded ring R, say r € R is homogenous of degree d if r € R;. In general, r =" 74
where rg is the d-th homogenous piece. Here are some observations:

(1) 1 € Ry, so Ry is a subring. This is non-obvious but here’s the proof. Let ry be the 0-th
homogeneous part of 1. If s is homogenous, then s = 1 - s = r9s. Writing any element as a
sum of homogenous ones, we see that s = s for any s € R. Thus r( is the multiplicative
identity.

(2) R4 are Ryg-submodules of R.

(3) R4+ = @®g>oRy is an ideal. This is called the irrelevant ideal.
Definition 6.2. Let I be an ideal of R. I is a homogenous ideal if I = ©4>0(I N Ry).

Equivalently, homogenous ideals I are those which can be generated by homogenous elements. For
any r € Rwriter =), 7q,thenr € I'ifand onlyif r4 € I for any d. We have that R/I = ©4>0Rq/14
so it is also graded.

If I, J are graded, then so are I + J,1 N J,1J and rad(I).
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Graded rings arise in nature in the context of projective spaces. For simplicity let k& be an alge-
braically closed field. The projective space P} as a set is

(k"1 = {0})/k"

A point a has homogenous coordinates (a,- - ,a,). There is an inclusion A} — P} given by
(ﬂfl,’ ce 7xn) = (]-axla" : )xn)'
Let f € k[zo,--- ,z,] be a polynomial. It defines a closed set V'(f) in A}, but this has no meaning

in P} since points can have different representatives. But if f is homogenous of degree d, then
f(tz) = tf(x), so it is well-defined to say at which points f vanishes.

More generally, if I C k[zg, - - - , ] is a homogenous ideal, we can define V., (I) C P} to be the set
of points on which all of I vanish. If f € k[zo, - - , x,] is homogenous of degree d, we can define

finh € k[yh' T 7y’n]

tobe fi"h(y) = f(1,y). So V(f"h) = Vi (f) N A}. The upshot is that the V. (I)’s for I homogenous
defines a topology on P} and it induces the Zariski topology on A}'. Note that A} = P} —{V. (o)},
so it is an open subset of P}. In fact, n + 1 copies of A} cover P}.

Note that in P} there is no such point as (0,--- ,0), so Vi(xo, - ,2,) = @ = V(1), so the usual
Nullstellensatz is false. The correct version is just to ignore this bad example: there is a bijection
between closed sets in P} and homogenous radical ideals not equal to (zo, - - - , zy).

A projective variety X is an irreducible closed set, which corresponds to V. (p) where p is a homoge-
nous prime ideal. For any X = V(I) (can take I radical), we have the homogenous coordinate ring
AL (X) = E[xg, -+ ,xy,]/1, which is graded since I is homogeneous. It is an domain if and only if
X is a projective variety.

In the affine case, A(X) is intrinsic to X, i.e. X = Y if and only if A(X) = A(Y). In the projective
case, one can define morphisms of closed projective sets (by doing so locally), but A4 (X) is not
intrinsic, since it depends on the embedding X C P}. Morphisms from A (Y) — A (X) don't
necessarily come from morphisms X — Y. For example, if m > n we have

klzo, - xn] = k[zo, -+ 2]
but there is no morphism P}* — P}: the map (zg, - ,Zm) +— (%0, -+ ,xy) is not defined at points
of the form (0, -+ ,0,Zp 41, , Tm).

Let Rbe a graded ring. Define Proj R to be the set of homogenous prime ideals p in R which doesn’t
contain R.. If I is a homogenous ideal, we can still define V, (I) to be the set of prime ideals in
Proj R that contain /. This defines a Zariski topology on Proj R. For example,

Proj R[ﬂj‘o’ U 7:1:”] = P%
with the usual grading. When R is a field k, we get
Proj k[an e axn] = PZ

but this is not the same as the P} before, in a similar manner how Spec k[z1, - - - , 2,,] is not the same
as the classical Aj}.

Modules. We have define the sums, intersections, and quotients of modules. If I C R is an ideal,
then /M is a submodules of M. The quotient M /IM is naturally an R/I-module. As an example,
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given M,, a € A some index set, we defined the objects [[, M, and &,M,. If A is any set and
M, = M for all «, then

H M = M4 = set of all functions A — M

«

The direct sum is the functions which are 0 for all but finitely many «. Also, if m € M, the cyclic
R-module Rm is the obvious thing. More generally the submodule generated by my,--- ,m, is
Rmy+---+ Rmy,.

Definition 6.3. The module M is finitely generated if there exist some my, - - - ,m,, such that M =
Rmy+---+ Rmy,.

Another way to produce new modules is by taking Homs. If M, N are R-modules, Homg(M, N)
is the set of all R-module homomorphisms. This is itself an R-module by pointwise addition and
multiplication. In particular, we define the dual module M" to be Hompg (M, R). Hom is a functor
in both arguments, covariant in the codomain and contravariant in the domain.

For [[,, M., we have projections 7, : [[, Mo — M,; for direct sum @,M, we have inclusions
iq : My — ®n,. Suppose a module N is equipped with maps f, : N — M,, then there exists a
unique map f : N — [[, M, suchthatm,o f = f,. On the other hand, if N is equipped with maps
9o : My — N, then there is a unique map g : ®,M, — N such that g, = g o i,. In other words,

Homp(N, H M,) = HHomR(N, M,)

Homp (@ Ma,N> = [[Homg(M., N)

In particular, if A is a set, we have the free module Fr(A) = @qcaR. Then we see that

Homp(Fr(A), M) = Homp (@ R, M) = [] Homg(R, M) = [] M = M4

acA acA acA

Lemma 6.4. Every R-module M is a quotient of a free R-module. An R-module M is finitely generated if
and only if M is a quotient of R" for some n.

Proof. Take A = M and consider Fr(A). There is an identity map A — M, which induces a map
Fr(M) — M a surjection.

In general, given a finite set my, - -- ,m,, € M, there isa map R" — M where (r1,--- ,ry) is sent to
>, rimi. So M is finitely generated if and only if this map is surjective.

Definition 6.5. Say M is finitely presented if there is a surjection R" — M such that the kernel is
also finitely generated.
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7. LECTURE 7: 2023.9.26

A complex M' % M By M is exact at M if the image of «vis equal to the kernel of 3. A complex is
exact if it is exact at every spot where it makes sense (not the head or tail). A short exact sequence
is an exact complex of the form

0->M —>M-—> M=o

A morphism of short exact sequences of short exact sequences are maps in the three spots such
that the entire diagram commutes.

Given a morphism a : M7 — M, we get an exact sequence
0 — ker(a) — My % My — coker(a)

The cokernel of the kernel is the same as the kernel of the cokernel, which are both the image of «.

Lemma 7.1. Let 0 — M’ % M T M" — 0 be a short exact sequence of R-modules. The following are
equivalent:

(1) there exists s : M" — M such that wo s = id

(2) there exists r: M — M’ such that r o i = idyp

(3) there exists an isomorphism f : M — M’ @& M" such that

0 M’ ‘ M L M' — 0
| ls |
0 M’ MaoM' ——s M ——0

is an isomorphism of short exact sequences.

-1
Proof. 3 to 1: Let s be the map given by M" — M' & M" L M. 3t02is of course the same.

1 to 3: Suppose there exists s : M” — M such that w o s = idj;. Observe that

M = ker(m) @ Im(s)
For each m € M, let ma = s(w(m)) and let m; = m — my, then ma € Im(s) and m; € ker(w). If
m € ker(m) N Im(s), then let m = s(m;) and m; = 7(s(my)) =0, som = 0. [

Definition 7.2. A short exact sequence is called split if the conditions of the lemma is met.

Example 7.1. 0 — C[z] = C[z] — C[z]/(z) — 01is not split. Let R = C[x, y].
0—R—R® 5 (z,9) =0

given by ¢ — (cy, —cz) and (a, b) — za + yb is a short exact sequence. It is not split since the first
map has no left inverse.

Lemma 7.3. If0 - M’ — M — M" — 0 if short exact, and M" is free, then it is split.

Proof. Let {e;} be a basis of M". Let m; be such that e; = w(m;). Let s be defined by s(e;) = m;. W
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Lemma 7.4 (snake). Given a map of short exact sequences, we get a 6-term exact sequence.

0 — ker — ker — ker — coker — coker — coker — 0.

Proposition 7.5. Suppose 0 — M' — M — M" — 0 is a short exact sequence. Then for any R-module
N, the following are exact

0 — Hompg(N, M') — Hompg(N, M) — Hompg(N, M")
0 — Hompg(M", N) — Hompg(M, N) — Hompg(M’', N)
Definition 7.6. An R-module P is called projective if for any surjection 7 : M’ — M of R-modules,

every map ¢ : P — M canbe lifted to amap ¢' : P — M’. In other words, given any solid diagram,
there exists a dashed map like this:

Ml/

P
-
-
-
-
-

P—s M
Lemma 7.7. Every short exact sequence 0 — M’ — M — P — 0 with P projective splits.

Proof.
0 M’ M P 0

We proved that every free module is projective, so every module is a quotient of a projective mod-
ule. This means that the category of R-modules has enough projectives.

Example 7.2. If R = R; x Ry, we can write 1 = (1,0) 4 (0, 1) a sum of idempotents. The R-module
Ry x 0 is projective but not free. As a concrete example, C[z]/(z(xz — 1)) isomorphic to C x C, but
C[z]/(x) is not free over C[z]/(z(x — 1)).

Lemma 7.8. A module P is projective if and only if it is a summand of a free module.

Proof. Assume P is projective. Pick a surjection ' — P with F free. Using the definition of pro-
jective modules, this surjection splits, so P is a direct summand.

On the other hand, suppose P @& Q = F for some free module F. Suppose there a surjection
M’ — M and amap ¢ : P — M. We can extend ¢ by 0 on @ to get a map F — M. But F' is
projective, so it lifts to a map ¢ : F — M". Then v|p is what we want. [ |

Definition 7.9. An R-module I is injective if for any injection ¢ : M — M’, every map ¢ : M — I
can be extended to a map ¢’ : M’ — I.
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Projective modules are easier than injectives because of the presence of free modules. Injectives
are not so easy. A characterization of injective Z-modules is that I is injective if and only if it is
divisible: for any x € I and n € Z non-zero, there exists y € I such that ny = . In fact, this works
over any PID.

Lemma 7.10. Suppose R is a ring and a is not a zero divisor. Then if I is injective, then I is a-divisible:
a : I — I is surjective.

Proof.

=

THTT,
— 1
A
-

-

/

-

’
s
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8. LECTURE 8: 2023.9.28

Definition 8.1. An R-module M is artinian if it satisfies the descending chain condition.

Lemma 8.2. Let M be an R-module. Then M is noetherian if and only every submodule of M is finitely
generated. This is also equivalent to every non-empty collection of submodules has a maximal element.

Proof. Easy. |
Lemma 8.3. Let M be an R-module. The following are equivalent:

(1) M is artinian

(2) every non-empty collection of submodules has a minimal element.
Proof. Easy. [ |

Example 8.1. If R is a k-algebra, k is a field, and dimy (M) < oo, then M is artinian as a R-module.

An artinian module not of this form is this: let R = k[z]. Let M — k[z, x~1]/k[r] where the quo-
tient is as k-vector spaces. This has the basis = as a vector space. The only submodules are 0,
L kfa] k], M.

Another example is Q/ Z as a Z-module.

Lemma 8.4. If0 — M’ — M — M" — 0is a short exact sequence of R-modules. Then M is noetherian
if and only if M’ and M" are noetherian. M is artinian if and only if M and M" are artinian.

Proof. If there is a chain in M, one can look at its image in M"” which stabilizes, and then look at
the intersection of it with M’, which will also stabilize. |

Corollary 8.5. Finite direct sums of noetherian(artinian) modules are also noetherian (artinian).
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Corollary 8.6. If R is a noetherian ring, then R®™ is noetherian, so any quotient of R®™ is noetherian, i.e.
any finitely generated R-module is noetherian.

Corollary 8.7. If R is noetherian and M is an R-module. The following are equivalent:
(1) M is noetherian
(2) M is finitely generated
(3) M is finitely presented.

It is true that artinian rings are noetherian, but it is not so obvious.

Lemma 8.8. Let M be an R-module. The following are equivalent:
(1) M is both noetherian and artinian
(2) M has a composition series, i.e. there exists a filtration
ocMycCc---CcM,=M
such that for each i, M;/M;_, is a simple R-module.

Lemma 8.9. M simple if and only if M = R/m for some maximal ideal m.

Proof. If S C R/mis a submodule, then the inverse of S in R is an ideal containing m. So S = R/m
or S = 0.

Now suppose M is a simple R-module. Let m € M be any non-zero element. Then Rm is a non-
zero submodule, so Rm = M by simplicity. Thus M = R/I where I is the annihilator of m. As
before there is no ideal that strictly contains I, so I is maximal.

Lemma 8.10. Let M be an R-module and let I be an ideal of R. If M is finitely generated and IM = M,
then there exists f € 1+ I such that fM = 0.

Proof. Use induction to reduce to the case of cyclic modules where this is clear.

Here is another proof with matrices. Let M be generated by m1,--- ,m,. Then each m; € IM, so
m; = Zj xi;m;j for some z;; € I. This means that the matrix I —(z;;);; kills the vector (m1, - - - ,my).
For any matrix T over any ring R, there is another matrix 72Y such that

det(T)I = 24T
Therefore we see that det(7') € R kills (mq,---,my). Furthermore, det([) is in 1 + I because
Tij € 1. [ |

Lemma 8.11 (Nakayama’s Lemma, first version). Let M be a finitely generated R-module and let I be
an ideal of R. If IM = M and I is in the Jacobson radical J(R) of R, then M = 0.
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Proof. Use the previous lemma to find a f € 1+ I such that fM = 0. But any elementin 1 + J(R)
is a unit, so M = 0. |

As an application, let’s prove the following: Let R be a local ring with maximal ideal m and residue
tield k, Let M be a finitely generated R-module. Let 21, - - - , z, be elements whose images generate
the k-vector space M /mM. Then x4, - -- , x, generates M.

The proof is like this. Let N = M/(Rx; + --- + Rz,). The goal is to show N = 0. N is finitely
generated because it is a quotient of M. Pick y € N, then y is the image of some z € M modulo
Rzy + - - - + Rx,. By assumption, the image of z in M/ /mM is a sum ) \;x; for some \; € k. Say \;
has a lift & in R. Then

z—=&§1wi— - — & € MM
This means y € mNN,i.e. N = mN. So we are done by Nakayama’s lemma.

A variant: if (R, m, k) is a local ring and ¢ : M — N is a map of finitely generated modules. Then
¢ is surjective if and only if ¢ : M /mM — N/mN is surjective.

Corollary 8.12. Over a local ring (R, m, k), a finitely generated projective module P is free.

Proof. Pick x1,--- ,x, € P which maps to a basis of P/mP. The by the previous lemma we obtain
a surjection

¢: R - P
This splits because P is projective. Let s be its right inverse. Note that s is an isomorphism on the
level of k-vector spaces because it is a surjection between vector spaces with the same dimension.

This proves that s is a surjection by the previous statement. Think to see s is actually the inverse of
¢, or use the FREDHOLD ALTERNATIVE. |

Lemma 8.13. Let R be any ring and M a finitely generated R-module. Then any surjective map ¢ : M —
M is an isomorphism

Proof. Let A = R[z]. Then M is an A-module where z acts via ¢. Then ¢ being surjective is equiv-
alent to (x)M = M. Then there exists f = 1+ fori € I such that fM = 0. Leti = ryz + - - +rzt.
We see that for all m € M,

(I+rmz+-+rz)ym=0
S0

t—1)

m=—(ri+---+rx " )rm

This proves that ¢ has an inverse given by 71 + - - - + rept=1), |

9. LECTURE 9: 2023.10.3

Definition 9.1. If M, M5, N are R-modules, a bilinear map is a map f : M; x Ma — N such that
it is linear in both variables. Denote by Bil(M;, Ma; N) the set of all bilinear maps.

As an example, Homp (M, N) x M — N given by evaluation is bilinear.
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Definition 9.2. A tensor product M; ®r M, is an object that satisfies the universal property: it is
equipped with a R-bilinear map ¢ : M; x My — M; ®p M>, and for any bilinear map f : M; x My —
N, there exists a unique R-linear map F' : M; ®r Ma — N such that f = F ot. In other words,
Bil(Ml, Mo; N) = HomR(M1 ® Mo, N)

As a solution to a universal property, any 2 tensor products are isomorphic by a unique isomor-
phism.

Proposition 9.3. Tensor product exists for any R-modules My, My.

Proof. Start with the free module F(M; x My). There is an R-linear map M x My — Fr(M; x Ma)
by doing nothing. Let () be the submodule of Fr(M; x M) generated by (m + mg,n) — (my,n) —
(mg,n), etc. the relations of bilinearity. Then let M; ® p My be Fr(M; x M)/Q. Denote the image
of (m1, mg) by mi ®ms. Then we getamap t : My x My — M; ® My such that t(my, ma) = m; @ma
that is bilinear.

Given f : M; x My — N bilinear, we obtain a map Fr(M; x M) — N. The fact that f is bilinear
exactly means f(Q) = 0, so it induces a unique map M; ®r Mz — N that commutes with f and ¢
(check on generators (mg,m2)). [

From the construction we see that tensor product M; ® g M> is generated by pure tensors m; @ meo.
This implies, for example, if two maps agrees on pure tensors then the two maps are equal.

Similarly, we can define a tensor product of £ modules as the object having the universal property
with bilinear replaced with multilinear.

Some comments: Bil(M;, Ma; N) = Hompg(M;,Hompg(Msz, N)) by the obvious correspondence.
Likewise, multilinear maps can be iteratively written as linear maps.

Using the universal property of tensor products, we get some properties:
(1) My ®p My = My ® M;

(2) Mi®r(Ma®pMs) = (M ®p M) ®p Mz = M; ®r My ®@pr Ms. (Use the universal property
of 3-tensor and 3-linear maps.)

(3) (M1 ® M) ®p Mz = My @r M3 @® My ®p Ms
(4) R®r M =M.
(5) R@n ®R R@m o~ REan

(6) Let fi : My — Ny and fy : My — Ny be R-module homomorphisms. Then we get a unique
map f1 ® fo: M1 ®r My — N1 ®@g No such that (f1 ® f2)(m1 @ ma) = fi(m1) @ fa(ma).

The first application of tensor product is change of rings. Let S be an R-algebra, and let M be an
R-module. We can form the tensor product S ®r M, which is of course an R-module. But it is in
factan S-module. The S-module structure is (s1, s2®@m) — (s152) ®@m. Now note that S®pr M have
2 R-module structures: the other one is through the ring map R — S and the S-module structure.
The two structures are the same.
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As an example, there is an canonical isomorphism S ®p (R®") = S®". In particular, if ¥ C K are
fields and V' is a k-vector space, then K ®j, V is a K-vector space.

The second application is the tensor product of two R-algebras. Let S and 7" be R-algebras. We
allow them to be non-commutative (but the image of R should be in the center of each). We can
S ®g T an R-module. We want to define multiplication

(SRrT)®r (S®RT) - S®rT

(It is a map from the tensor product since multiplication needs to be bilinear and commutes with
the R action, so that S ®g T is an R-algebra.) The way to define it is to define a multilinear map

(51,1, 82,t2) = (5152) ® (tat2).

As an example, let T' = R[z]. Then S ®g R[z] = S[z] as rings and as R-algebras. Applying this to
S = Ry, we get R[z]®r R[y] = R|[z, y]. For anon-commutative example, S®Mat,,(R) = Mat, (5.

A fun problem: Let H be the quaternion algebra over R with basis 1,4, j,k. What is H @z H?
Answer: Mat4(R).

Note: if S and T" are R-algebras (commutative), then S ®g T is a coproduct in the category of
commutative R-algebras. In other words, there exists R-algebra maps iy : S — S ®gr T and i :
T — S®rT,and givenany f; : S — Aand fo : T — A, there exists a uniquemap F': S®rT — A
such that fi{ = F o4y and fo = F o iy. To prove this, the tensor product universal property gives
the correct R-module map, but still need to check it is an R-algebar map. This requires A being
commutative.

Exactness properties of tensor products.

Proposition 9.4. If M’ — M — M" — 0 is an exact sequence of R-modules and N is an R-module, then
M’@RN—)M(X)RN*)MH@RN*)O

is exact.

Note ®zN is not exact on the left: an injection M’ — M doesn’t give an injection M’ @z N —
M ®pr N. Tensor products preserves surjections but not injections.

Examples: If ] is an ideal in R and M is an R-module, then R/I ®p M = M /IM as R/I-modules.
The proof is to consider I — R — R/I — 0. Tensoring by M to get
I®r M - Regr M — (R/I)@r M — 0

The middle term is isomorphism to M. The left term is not necessarily I M, but its image in M is
IM.

10. LECTURE 10: 2023.10.5

Example 10.1. Let £ be a field, and K a finite extension of k. We can form K ®; K, which is a
k-algebra. If K is a Galois extension over k, then K ®; K = K< as rings where d = [K : k]. This
is not a domain, but it is reduced. If we just assume that K /k is separable, then K ®; K is still a
product of fields, so it is reduced. If K/k is not separable, then K ®; K may not be reduced.

Example 10.2. Let £ be algebraically closed. If X and Y are closed algebraic sets of A} and A}’
defined by I(X) and I(Y'), then it is easy to see that X x Y C A}**" is a closed algebraic subset.
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If we denote the ring of A} by k[x1,- - , z,| = k[X], and similarly the ring of A" by k[y1,- - ,ym] =
k[Y], then the ring of A7 is k[X,Y] = k[X] ® k[Y]. The subset X x Y is then V(I(X)k[X,Y]
I(Y)k[X,Y]). The affine coordinate ring of X x Y is isomorphic to A(X) ®; A(Y).

It is also easy to see that if X and Y are irreducible, then X x Y is an irreducible subset of AZ””.
This is saying that if A(X) and A(Y") are domains, then so is A(X) ®; A(Y). More generally, if R, S
are any k-algebras, then R, S reduced implies R ®j, S reduced; if R, S are domains, then R ®;, S is
a domain.

Suppose R = A(Z), S = A(X), T = A(Y). Suppose S,T are R-algebras, i.e. there are maps
A(Z) — A(X) and A(Z) — A(Y). This corresponds to morphisms (of algebraic sets) f : X — Z
and g : Y — Z. As sets, the fiber product X xz Y is by definition

{(z,y) e X xY [ f(2) = g(y)}

This comes with a morphism ~ : X xz Y — Z by h(z,y) = f(z) = g(y). This is called the fiber
product for the following reason. Let X, = f~!(2) and Y, = g7!(2). Then (X xzY), = X, x V..

The idea is that A(X) ®4(z) A(Y') “is” the ring A(X xz Y'). But in general this tensor product is
not reduced. The general picture is that Spec S Xgpec r SpecT = Spec(S ®r T).

Now we go back to the exactness properties of tensor products. We prove that ® g N is a right exact
functor.

Proof. The situation is that
0= M L v —o.
The first thing to check is that g ® id is surjective. The tensor product M” @r N is generated by

m ® n, and g is surjective, so m = g(z) for some = € M. Thus the image contains generators, so
g ® id is surjective.

We then check Im(f ® id) = ker(g ® id). Certainly the composition is 0, so we just need to show
ker(g ® id) C Im(f ® id). Let I = Im(f ® id). Since I is contained in the kernel, we get a map
(M ®p N)/I - M" @ N. It suffices to show that this is an isomorphism. To do this, we need to
findh: M" ® N — (M ®g N)/I. Define
h:M"x N — (M&grN)/I
(m,n) — (Mm®n)mod I
where m is a lift of m, i.e. g(m) = m. This is well-defined, since any other choice of a lift of m is of
the form m + f(z) for some x € M’ by the exactness of the original sequence, so the difference is

f(z) ®n which is in I. This is clearly R-bilinear, so we obtain the map h. Checking on pure tensors
shows that  is the inverse.

The application we mentioned last time is (R/I) @ M = M/IM. As an example,
(Z/nZ) 2z (Z/mZ)=(Z/mZ)/(nZ/mZ)=Z/dZ

where d = ged(m,n). Warning: I ®p M is not necessarily isomorphic to /M. It is only when
I ®r M — M is injective. An example of such failure is: I = nZ = Z as Z-modules. We have

0—-I—Z—Z/nZ—0
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Tensoring by Z /n Z, we get

nZRZL/nZ —-Z/nl— (Z/nZ)®z(Z/nZ)—0
but the first map is the zero map.

Note that Q ®z Z /nZ = 0 for any n. Question: what is Q ®z Q?
Corollary 10.1. If M, N are finitely generated R-modules, then sois M ®r N.

Proof. Tensor the surjection R¥ — M by N to get a surjection R¥ @ g N — M ®r N. We know that
RF @p N = N* is finitely generated. |

Corollary 10.2. If M is a finitely generated R-module and J is an ideal contained in the Jacobson radical
of R, then sois M ®pr (R/J) = 0 implies M = 0. In particular, if R is local with maximal ideal m, and
k= R/m, then M ®@pr k = 0 implies M = 0.

Proof. M ®p (R/J) = M/JM, so it becomes the usual statement of Nakayama’s lemma. [

Corollary 10.3. Let R be local with maximal ideal m and k be its residue field. Let M, N be finitely generated
R-modules. Then M ®@gr N = 0 implies M = 0 or N = 0.

Proof. Suppose N # 0. Then the k-vector space N/mN # 0 by the previous corollary. Choose a
surjection N — N/mN — k — 0 and tensor with M. We get

M@RN—)M(X)RN/ITLN—)M@R/C*)O
Thus M ®pr k = 0, so the previous corollary implies M = 0. n

We switch gears to flatness.

Definition 10.4. An R-module M is flat if tensoring with M preserves injections. In other words,
tensoring with M is exact.

A trivial example is that R is a flat R-module, since tensoring with R does nothing.

Example 10.3. ¢, N, is a flat R-module if and only if each N, is flat. If M" — M is injection, then
tensoring gives
P ®r No) = (M ©r Na)

« «

This also implies a projective module P is flat. This is because P & P’ = Fr(A) for some free
module Fr(A), the free module is flat, so its direct summand P is flat. In summary, free implies
projective implies flat. As an example, Q is a flat Z-module but not projective or free.

Definition 10.5. Let R be a domain. An R-module M is torsion free if whenever rm = 0, either
r=0orm=0.
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If R is a domain, a flat R-module M is torsion free. This is because we can tensor the injection
0— R RbyN.

If R is a PID, then flatness is equivalent to torsion free. This fails when R is not a PID. Consider
R = k[z,y] and m = (z,y) C R. This is torsion free but not flat.

11. LECTURE 11: 2023.10.10
Proposition 11.1. For an R-module N, the following are equivalent:
(1) N is flat

or all finitely generated R-modules and all injections — M, QR — QXpr N is
2 Il finitely g d R-modules M’ and all injecti M’ M, M’ N M Ni
injective

(3) forallideals I C R, I ®p N — N is injective.

(4) for all finitely generated ideals I C R, I @ g N — N is injective.

Proof. Itis clear that 1 implies all the rest. The first step is to prove 2 implies 1. Assume 2. Suppose

M i> M is an injection for arbitrary R-modules. Let ) | m; ®n; be in the kernel of f ®idy. We need
to show that >~ m; ® n; = 0in M’ ®p N. We want to find finitely generated modules M C M’,
My C M such that m; € Mgand f(m;) € My, together with a map g : M, — M. Take M) to be the
submodule generated by m;’s. We know that M ®@g N is a quotient of the free module Fr(M x N)
by some relations, so the formal sum

> (f(ma),na)
is in the submodule generated in these relations. We can thus write > (f(m;), n;) as a finite sum of

the relations. Now let M be the submodule of M generated by f(m;) and all the first coordinates
of the relations used to express > (f(m;),n;). This is finitely generated.

Therefore the restriction of f to M/ maps into My, and } f(m;) ® n; = 0 since the relations used
to make it 0 is in My. This means that ) m; ® n; is in the kernel of the restriction of f to M. By
assumption 2, we get that > m; ® n; = 0.

4 implies 3 is the same proof. It remains to show 3 implies 2.

Step 1: We claim that if S is a submodule of R, then S @ N — R*¥ @ N = N is injective. The
proof is by induction on k. If £ = 1, then S is an ideal of R, so the statement is by hypothesis.
Assume this is true for k — 1. Then let S” be the image of S under the projection R¥ — RF~!. Let
S’ be the kernel. So we have the diagram

0 S’ S S 0
| [
0 R RF R —— 0

Tensoring with IV, we get

S/®RN*> SRR N —— SII®RN*> 0

/ ! I

0 N NF J\ i
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where the left and right vertical arrows are injections by induction hypothesis and the base case.
This implies the middle arrow is also injective by chasing the diagram.

Step 2: General case: Let M’ be a submodule of M and M is finitely generated, so there is a surjec-
tion R* — M. Let Sy be the kernel of R¥ — M. Let S be the preimage of M’ in R¥. We obtain

0 So S M’ 0
0 So R M 0

Tensoring by N, we see that the left and middle arrows remain injective, which then implies the
right arrow is also injective.

Corollary 11.2. If R is a PID and M is an R-module, then M flat if and only if M is torsion free.

Proof. Assume M is torsion free. For any non-zero I C R, we know that I = (a), so I = R as
R-modules. Then the map I ®g M — M is identified with R ®g M — M where the map is
multiplication by a. Torsion-freeness impleis multiplication by a is injective, so we are done. W

Theorem 11.3. Let N be an R-module. The following are equivalent:
(1) N is flat

(2) foreveryry,--- v, € R,my, - ,my € N, if Y .rym; = 0in N, then there exists some s;; € R
and somenj € N for 1 <i < kand1 < j <4, such that ), r;s;; = 0 and m; = Zj sing. In
other words, every relation in N is a consequence of a relation in R.

Proof. Assume N is flat. Suppose >, 7;m; = 0. Then there is a map R¥ — Rby sending (¢1,- - - ,tx)
to > rit;. Let K be the kernel of this map. Tensoring everything with NV, we get

0> K®rN-—> NS N0

and the last map sends (x1,--- ,xy) to > rjz;. The hypothesis is that ), 7;m; is in the image of
K ®pr N. Therefore, there exists 0; € K and n; € N such that

Zﬂj@)nj = (ma, e my)
J

Since 0; € K, we know that o; = (s1;, - ,sk;) € R¥ such that 3", 7;s;; = 0. Substituting this in,
we get what we want.

Now assume 2 is true. To prove N is flat, we want to show I ®g N — N is injective for all ideals 1
in R. An element in the kernel of this map is some element ), 7; ® m; and ), 7;m; = 0in N. The
hypothesis provides n;, s;; such that ) |, 75,5 = 0and m; = ; Sign;. Therefore

doriomi=) ri®Q siyng) =y Y (risi) @n; =0
i i J Jo
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Corollary 11.4. Let R be a local ring. Let M be a finitely generated R-module. Then M is flat if and only
if M is projective, if and only if M is free.

Proof. We know that free implies projective implies flat. So assume M is flat. Let m be the maximal
ideal and k be the residue field. Then M /mM = M ®p, k is finitely generated over £, so it is a finite
dimensional vector space. Choose a basis e, - - - ,e,, and choose lifts my,--- ,m, € M. Then we
getamap f: R" — M given by (r1,--- ,r,) — >_rim;, and the composition R" — M — M /mM
is surjective. By Nakayama’s lemma, this implies f is surjective. We get

0—-—K—-R"—-M-—=0

We want to show K = 0, namely if >, r;m; = 0 then r; = 0 for all i. We will use induction to prove
Zle rim; = 0 then r; = 0. For k = 1, if rymy = 0, then by the previous theorem, we know that
there exists s; € Rand n; € M such that r1s; = 0 and m; = >, s;n;. Note that m; is not in mM
since it maps to e; # 0, so there exists some j such that s; ¢ m. This means s; is a unit, so r1s; = 0
implies r; = 0. The inductive step is similar. |

Now we start the topic of localization.

Definition 11.5. Let R be any ring. S is a multiplicative subset of R if it contains 1, and if 51,52 € §
then s;s2 € S. Denote the localization by S™!R.

12. LECTURE 12: 2023.10.12

Example 12.1. Let p be a prime in Z. Write Z,, for Z localized at {1,n,n?, - - - } which is just Z[1/n].
Note that for example Z[1/6] = Z[1/72]. Write Z,) for the localization of Z at the prime ideal (p).

Example 12.2. Let R = k[z1, - ,x,) where k is algebraically closed. Let f € R. The localization
Ry is klx1, - ,2n,1/f]. Let m be the maximal ideal (1 — a1, ,2, — ap). Then R — m is the set
of functions that doesn’t vanish at a = (a1, - -, a,). The localization Ry, is then {f/g | g(a) # 0},
which is the set of rational functions defined on some open neighborhood of a.

Similarly, if p is a prime ideal, then V'(p) is an affine variety X. Then R, is the set
{f/g | g is not identically 0 on X }.

All rational functions defined at some point on X, i.e. defined on some open subset of X.

Example 12.3. Let R be any ring. The localization R, can be thought of as R[x]/(1 — zr). R, = {0}
if and only if r is a nilpotent, equivalent to 1 — zr is a unit in R[z].

Proposition 12.1. Let S be a multiplicative subset of R. Let f : R — T be a ring homomorphism such that
f(S) C T*. Then there exists a unique homomorphism f : ST'R — T of R-algebras.

Proof. Define f(r/s) = f(r)f(s)~1. If r1/s1 = ra/s9, then there exists some ¢ € S such that tsor; =
tsira. Then f(t) f(s2)f(r1) = f(t)f(s1)f(r2). Since f(t) is a unit in T, we can cancel it and see that
f is well-defined. |

Corollary 12.2. The only R-algebra automorphism on S~™!R is the identity.
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An application: given 1,2 € R, we can localize twice (R, )r,, or (Ry,)r,, Orjust form R, ,,. These
are all canonically isomorphic since they satisfy the same universal property.

Ideals in a localization.

Let ¢ : R — S™!Rbe the natural map. If I isan ideal in R, let IS~ R be the ideal in S~! R generated
by the image of I. Then IS™'R = {r/s | r € I, s € S} because the right side is an ideal.

Proposition 12.3. Let J be an ideal in S™'R. Let [ = ¢$~(J) C R. Then J = IS™'R.

Proof. The inclusion ISR C J is clear by definition. Now let 7/s € J. Then s(r/s) € J, so
r/1 € J. This means r € I by definition of ¢, so r/s € IS™! R by the previous discussion. |

Proposition 12.4. Let p be a prime ideal in R. If p N S is not empty, then pS™'R = S™IR. IfpN S =g,
then pS™'R is a prime ideal in S™'R, and ¢~ (pS™R) = p. So there is a bijection between prime ideals
in ST R and prime ideals in R avoiding S.

Proof. Assume p NS = @. Suppose ¢(r) € pS~IR. Then /1 = 1'/s for some r’ € p. So tsr = tr’
for some t € S. Thus tsr € p,but s,t ¢ p, sor € p. This proves that ¢~ (pS~'R) = p. The same
reasoning shows that pS~! R is a prime ideal.

On the other hand, if Q is a prime ideal in S™!R, then ¢~1(Q) is a prime ideal in R. The previous
proposition tells us that Q = ¢~ 1(Q)S ™! R. This establishes the bijection. [ |

Corollary 12.5. R noetherian implies S™' R noetherian. R artinian implies S~' R artinian.
Proof. Chain of ideals is preserved. |

Corollary 12.6. If p is a prime ideal in R, then Ry, is a local ring with maximal ideal p R,,. The residue field
is R, /p Ry, which is also the field of fractions of R/y.

Localization of Modules.

Let S be a multiplicative set of R and M be an R-module. Define S~ M to be fractions m/s for
s € S, and m1/s1 = ma/sq if and only if there exists some ¢ € s such that t(mjsa — mas;) = 0.
The action £ - % = 2 makes S~'M an S~'R-module. There is a natural map ¢ : M — S~ M. If
S = R — p, denote by M, the localization.

Localization is functorial: if f : M — N, there is a map f:S8 M — SN by sending m/s to
f(m)/s.

Given R, S, M, there are two ways of producing S~!R-module. One is S~!M, and the other is
(S _1R) ®Xr M.

Lemma 12.7. S~'M is functorially isomorphic to (S™'R) @ g M as S~' R-modules.

Proof. On one hand, there is an R bilinear map
(r/s,m)— rm/s
On the other hand, we can define S™'M — (S™'R) @z M by sending (m, s) — (1/s) ® m. [
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Proposition 12.8. M — S~'M is an exact functor.

Proof. Suppose M’ % M L, M" is exact. Consider fand §. The clearly jo f = 0. Suppose
g(m/s) = 0. Then g(m)/s = 0, so there exists t € S such that tg(m) = 0. This means g(tm) = 0, so

by exactness tm = f(n) for some n € M'. Thus m/s = f(n/ts). [

Corollary 12.9. S~'Ris a flat R-module.
Proof. Tensoring with S~!R is the same as localizing at S, which is exact. |

For example, Q is a flat Z-module.

There are all sorts of properties. E.g.
(1) S™H(My + Mz) = S~1My + S~1M,
(2) S~Y My N My)=S"1MyNSTIM,
(3) STH(M/N)=S"IN/STIM

13. LECTURE 13: 2023.10.19

We look into local properties of a ring R or a module M: a property P is said to be local if P holds
for R if and only if P holds for R, for all prime ideals p. (or all maximal ideal)

Proposition 13.1. Let M be an R-module. Then M = {0} if and only if M, = {0} for all prime ideals p
in R, if and only if My, = {0} for all maximal ideals m in R.

Proof. Suppose M, = {0} for all maximal ideals m in R. Assume M is non-zero. Choose some
x € M non-zero. Let I be the annihilator of m, i.e. I = {r € R | rm = 0}. Since m is non-zero, we
know 1 ¢ I, so I is a proper ideal. Then there exists a maximal ideal m containing /. We know that
My = 0, so there exists s ¢ m such that sm = 0. But s € I C m, which is a contradiction. [

Corollary 13.2. Let M, N be R-modules. Let f : M — N be a homomorphism. Then f is injective if and
only if for all prime ideals p (or all maximal w), f, : M, — N, is injective. Surjectivity can also be checked
locally this way. Same is true for isomorphism.

Proof. Let K = ker f, then there is an exact sequence 0 —+ K — M — N. Localizing we get
0 — K, — M, — Ny. Now whether K is zero can be checked locally. |

A non-trivial fact is that

Proposition 13.3. Let R be a ring and M an R-module. Then M is flat over R if and only if M, is flat over
Ry, for all prime ideals p, if and only if My, is flat over Ry, for all maximal ideals m.

We need some lemmas to prove the above proposition.
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Lemma 13.4. Let R be a ring and T an R-algebra. Let M, be an R-module and My be a T-module (and
hence an R-module). Then for all T-modules N, we have

(M ®r My) @7 N =2 My @p (M2 @7 N)

Lemma 13.5. Let R be a ring, T an R-algebra, and M an R-module. Then M is flat over R then M @ T
is flat over T.

Proof. Let N be a T-module. Then
(MerT)or N=2Meg (T ®@r N)=ZMep N
If N — N is an injection of T-modules, then tensoring with M ®@pr T we just get
M®@rN' — Mo N

This is injective since M is R-flat. n

Lemma 13.6. Let R be a ring and T an R-algebra. Let My, My be R-modules. We have
(My ®r M2) @pT = (M1 @ T) @p (Ma ®rT).

Proof. Omitted. |

Proof of 13.3. If M is flat, then M ®g R, = M, is flat over R, by Lemma 13.5.

Now suppose M,y is flat over Ry, for all maximal m. Let N’ — N be an injection of R-modules. We
know that N}, — Ny is injective. By flatness of M,,, we get

N}y @Ry M — N ®ppy M
is an injection. Using Lemma 13.6 with T' = R,,, we see that
Nu @Ry Min = (M @ N) @ Ry = (M @R N)n
So we get that (N' ®g M )m — (N @ M)y, is injective for all maximal ideal m, so then N’ @ g M —
N ®pg M is an injection. |

Note: Projective or finitely generated are not local properties.

Proposition 13.7. Let M be an R-module. TFAE:
(1) M is projective and finitely generated.
(2) M is flat and finitely presented.
(3) M is finitely presented and locally free (My, is free over Ry, for all maximal ideal m).
Some remarks: M finitely presented means that there is an exact sequence R — R™ — M — 0,

but it is not true that the first map can be made injective. If R is noetherian, finitely generated is
equivalent to finitely presented. In the finitely presented case, projective = locally free = flat.
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Proof. 1 to 2: We know that projective implies flat. If M is projective and finitely generated, then R
is finitely presented (this is hw).

2 to 3: If M is flat and finite presented, then M is projective. We know that when M is finitely
generated, projective implies locally free (we proved in a local ring, projective is same as free).

3 to 1: If M is finitely presented then M is finitely generated. We need to show that M is projective.
Let N — N” be a surjection of R-module. We want to show Homp (M, N) — Homp(M,N") is
surjective. We check locally. So for every maximal ideal m, we want to check

Hompg(M, N) ®g Ry — Homg(M, N") @ R

is surjective. In the case where M is finitely presented and R, is flat over R, we have an isomor-
phism
Hompg(M, N) ®r Rn — Hompg, (M ®r Bn, N @r Rin)
Now M, projective (it is free) implies
Hompg,, (M, Niw) — Hompg,, (My, Np)

is surjective. So we are done. u

Remark: in the case where M is finitely presented, localization commutes with Hom:

S~ Homp(M, N) = Homg-15(S~'M,S™IN).

Stuff about sheaf and stalks. Skipping in notes.
14. LECTURE 14: 2023.10.24

Theorem 14.1. Suppose Dy, is an open cover of Spec R. Then

0—>R—>HRfa — HRfafﬁ

o a?ﬁ

is exact. In particular Ogpec r(Spec R) = R. Similarly, if M is an R-module, then same statement is true.

Proof. By quasi-compactness we assume this is a finite cover D(f1),--- , D(fn). So (f1,- -, fn) gen-
erates (1), and thus (f{¥,--- , f) generates 1 for any N > 1.

The desired exactness is the following: given r; € R such that r;/1 = r;/1in Ry, for all 4, j, then
there exists a unique r € R such that r/1 = r;/1 in Ry, for all 1.

Uniqueness: say r € R such that r/1 = 0 in Ry, for all i. Then there exists f{¥ such that fr = 0
foralli. Thenr =7-1=r(_, aifN)=0.

Existence: Suppose h;/fY € R; (can assume the exponent is the same since there are finitely many
of them) and h;/f whose images in Ry,y, are equal, i.e.

(ifi)™5 (b = (fify)™ N by
Choose M > m;; + N for all ij, then
M ¢M—N M (M—N
[T he = 0Ty

Let H; = fM~"h;. Then
M M
j H;=f, H;
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We have 1 = >, a; fM, so
St = =Yg =

sor =), a;H; hasimage H;/f = h;/f¥ inall Ry,. [ |
Definition 14.2. A Zariski local property of R or an R-module M is a property inherited by lo-
calizations, and holds for R (or M) if and only if there exists fi,-- - , f,, that generates 1 and the
property holds for all Ry,.

Proposition 14.3. Suppose M is an R-module, and fi,-- - , f, generates 1. TFAE:
(1) M=0
(2) My, =0foralli

Proof. My, = 0 for all i means that for all m € M, there exists N such that f¥m = 0. Then
m=1-m=3,a;fNm=0. [

Proposition 14.4. Let R, M, f; be as above. Then M is finitely generated (resp. finitely presented) if My,
are finitely generated (resp. finitely presented).

Proof. Localization is exact (preserves surjection, etc.) so the forward direction is obvious.

Assume My, is finitely generated for all f;. Since there are finitely many M},’s, there exists my,--- ,my, €
M such that the images of m; in My, generate My,. We claim these elements generate M. Let
R* — M be the map and let Q be the cokernel, so we get
RF S M—-5Q—0
Localizing we get
R]Jii — My, = Qf, — 0
So @y, = 0 for all i, which implies @ = 0.

Assume My, is finitely presented for all f;. So by the previous proof M is finitely generated. Let
K be the kernel of the surjection R¥ — M — 0. We want to show that K is finitely generated. By
the previous paragraph we can check K, is finitely generated. This is true by Schaneul’s lemma
in homework, since 0 — Ky, — R} — My, — 0 are exact sequences. u

We change topic to integral homomorphisms. In number theory, this is relevant to algebraic inte-
gers. In algebraic geometry, this is connected to studying varieties by projecting onto linear spaces.

Definition 14.5. Let T be an R-algebra. Let R be the image of RinT'. An element ¢ € T'is integral
over R is there exists a monic polynomial p(z) € R[z] such that p(t) = 0.

Proposition 14.6. Keep the notation above. TFAE:
(1) tis integral over R

(2) R[t] is a finitely generated R-module
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(3) there exists a R-subalgebra Ty of T' containing R and t which is a finitely generated R-module (or
R-module, same thing)

(4) there exists an R[t]-module M which is finitely generated as an R-module and is a faithful R][t]-
module, i.e. if am = 0 for all m then o = 0.

d

Remark: if p(x) is monic, then R[z]/p(z) is a free R-module with basis 1,z,--- ,29"! where d =

deg p.

Proof. 1 to 2 is obvious. 2 to 3: take Ty = R|[t]. 3 to 4: take M = Ty. It contains R[t] and has 1, so it
is faithful as an R[t]-module.

4 to 1: look multiplication by ¢: M %y M. Then there exists monic p(z) such that p(¢)M = 0. This
is true becuase: Suppose mi, - -+ , my generate M, and suppose tm; = } . q;jm;. Take p(z) to be
det(x — (gi;)). Now faithfulness of M implies p(t) = 0. [ |

Corollary 14.7. Notation as before. Then ty,--- ,t, all integral over R if and only if Rt1,--- ,t,] is a
finitely generated R-module.

Proof. For the forward direction, use induction on n. The base case n = 1 is the equivalence 1

and 2 in the previous proposition. For the inductive step, assume R[ti, - - ,t,_1] is generated by
a1, ,aqover R. Ift, isintegral over R, thenitis integral over R[ty, - - ,t,—1],80 R[t1, -+ ,tn_1,tn]
is a finitely generated R[t;,- - ,t,—1], say by 51, -, Bk. Then {«;3;} generates R]t;,--- ,ty,] over
R. [

Corollary 14.8. Integral elements of T form a subring of T containing R, and hence an R-algebra.

Definition 14.9.
(1) Integral elements of T is called the integral closure of Rin T'.
(2) If f: R — T is injective and T is integral over R, then T is called an integral extension.
(3) Say R is integrally closed in T if its integral closure is R.

(4) If Ris a domain, say R is integrally closed if it integrally closed in Frac(R).

Lemma 14.10. Let f : R — Ty and g : Ty — T5. If T is integral over R and T is integral over T}, then
T is integral over R via g o f.

Proof. Given t € Ty, there exists a monic polynomial p(z) € Ti[z] such that p(t) = 0. Write

p(z) =a" + 2"+ + @

where a; € Ty. Now R[ag, - - - ,an—1] C T is a finitely generated R-module since a; are integral over
R, and R[ayg, - - ,a,—1][t] is a finitely generated R[ay, - - - , a,—1)-module. Then Rlag, - - - ,an—1][t] is
a finitely generated R-module, so t is integral over R. u

Corollary 14.11. The integral closure of R in T is integrally closed in T.
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Example 14.1.
(1) Let R C Rjx]. The element z is not integral over R.

(2) If R is a UFD, then R is integrally closed. Proof: given r/s € Frac(R) where r # 0 and
ged(r, s) = 1, if p(r/s) = 0 for monic p € R[z], then
4 a5 4 apst =0

This implies s divides 7, so s is a unit in R.

15. LECTURE 15: 2023.10.26
Example 15.1.

(1) If Ris a field and F' is an extension, then F is integral over R if and only if F is algebraic
over R.

(2) Theintegral closure of Z in Q(7) is Z[i], but the integral closure of Z in Q(v/—3) is Z[%ﬂ]
In general for d squarefree, the integral closure of Z in Q(V/d) is
{Z[\/&], d # 1 mod 4

Z[4d) g —1mod4’

(3) Let k be a field. Then y? — 23 is irreducible in k[z,y] because it is monic and primitive.
(Factors only if 22 is a square, which it is not). This means k[, y]/(y? — x3) is a domain. It
is not integrally closed. Consider y/x which is not in R. We have

(y/2)* =y*/a* =2’ [a® =z € R

So y/xz satisfies t* — x = 0, hence integral. In fact, there is an inclusion R < k[t] by setting
t? =zand t® = t? -t = 2(y/x) = y. The image of R is then k[t?,t3]. This is connected to
the fact that y2 = 22 is not a “smooth curve”.

Proposition 15.1. Let T  be an R-algebra. Let S be a multiplicative subset of R. The image of S in T is still
a multiplicative set, which we still call S. Then

(1) fort € Tand s € S, t/s € S™IT is integral over S~ R if and only if there exists some v € S such
that vt is integral over R.

(2) if T is integral over R, then ST is integral over S~ R.

(3) the integral closure of S™'R in S™T is the integral closure of R in T localized by S.

77

“Taking integral closure is compatible with localization, and localization preserves integrality.
Also, 1 trivially implies 2 and 3.

Proof. We prove 1. Lett/s € S 7. If vt is integral over R, then
()" +---+ai(vt) + a9 =0
Multiplying by (vs)™", we get
(t/s)" + -+ ap(vs)™™ =0.
This is a monic polynomial with coefficients in S™!R, so t/s is integral over S~ R.
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Conversely, suppose t/s is integral over S~!R. Then
(t/s)" + (bn1/wn—1)(t/s)" " + -+ + by /wo = 0
Multiply through by s"wyq - - - w,_1, we see that
£+ syt e+ 8" =0
in S7IT (not in T"!). But this means there exists some v € S such that
o™+ sbit" T 4+ 8m) =0
in T. Multiplying by v"~! gives the desired equation. |

Proposition 15.2. If R is a domain, the following are equivalent:
(1) Ris integrally closed
(2) for all prime ideals p, Ry, is integrally closed
(3) for all maximal ideals m, Ry, is integrally closed.

Being integrally closed is a local property.

Proof. Let R be the integral closure of R in K, the field of fractions. Then R = R if and only if for
all p prime, R, = R, = Ry, where the last equality is by the previous proposition. n

We consider situations of interest in number theory. Let R be a domain, K its field of fractions,
and I an extension of K.

Lemma 15.3. If F'/K is algebraic, then for all o € F, there exists r € R non-zero such that ro is integral
over R.

Proof. Clear denominators. |

Proposition 15.4. Let R be integrally closed. Let o € F be algebraic over K. Then « is integral over R if
and only if the minimal polynomials of o actually lies in R[z).

Proof. Backwards is obvious. For the forward direction, first assume that K («) is separable over
K, which means that if d = [K () : K], then there exists 01, - - - , 04 distinct embeddings of K («)
into K (i.e. the minimal polynomial of « has d distinct roots). Then the minimal polynomials of «

1S
d

[ - ila)).

i=1
Thus the coefficients of this polynomials are symmetric functions in o;(«). Since « is integral over
R, there exists p(z) € R[z] such that p(«) = 0. Applying o;, we get p(g;(a)) = 0 too. So o;(a) are
all integral, so the symmetric functions are also integral over R. Because R is integrally closed, the
coefficients are in R.

If K («) is not separable over K, then coefficients of Hle (x —oi(e)) lies in some purely inseparable
extensions. Taking the product to some p™¥ solves the problem. |
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Example 15.2. Let R =7, K = Q,and F' = Q(ﬁ) If & = a + bV/d, then the minimal polynomial
of ais z2 — 2ax + a? — db>.

Proposition 15.5. Let R be integrally closed. Suppose F/K is a finite separable extension. Let Ry be
the integral closure of R in F. Then there exists o, -- ,oq € F a basis of F over K such that Rp C
Ray + -+ - + Rayg. In other words, Ry is contained in a finitely generated free R-submodule of F'.

In particular, if R is noetherian, then R r is a finitely generated R-submodule of F'.

Example 15.3. Let R = Z, K = Q. The ring of integers Op is a free Z-module of rank d = [F : Q).
(torsion free, Z is PID, so free).

Proof. If o € F, multiplication by « is a linear map F' — F, so it has a trace tr(«). Trace is K-linear,
and tr(1) = d. If the characteristic of K doesn’t divide d then tr(1) # 0. The separability hypothesis
guarantees that tr is not identically zero, so the bilinear form

(, ) = tr(af)

is non-degenerate, so it identifies F" with its dual as K-vector spaces.

Let 01, -+ ,04 be distinct embeddings F(a) — K, then tr(a) = >, 0i(a). In particular, if « is
integral over R, then tr(«) is integral over R and is also in K. Since R is integrally closed, tr(a) € R.

Now let 31, --- , 84 be a K-basis of F. After clearing denominators, we can assume 31, --- , 3; are
integral over R, i.e. in Rp. Let vy, - - - , aq be the dual basis under the trace, i.e. tr(c;/3;) = d;j.

Suppose v = >, ¢jo; with ¢; € K and v is integral over R. Then
tr(v6;) = ¢
Since v, 5; € ﬁp, we have vf; € ﬁp, so tr(7f;) € R. Thismeans v € >, Roy;. |

We start the going up theorem.

Theorem 15.6 (Going up). Suppose R C S are rings, and S is integral over R. Let p be a prime ideal of R.
The going up theorem says that there exists a prime ideal q of S such that qN R = p. (i.e. Spec S — Spec R
is surjective.) Also, if q1, q2 are prime ideals of S, q1 C q2 and q1 N R = q2 N R, then q; = qa.

Corollary 15.7. Suppose p1 C po are prime ideals in R, q is a prime ideal in S and q; N R = py. Then
there exists a prime ideal q2 in S such that q2 N R = po and q1 C qa.

Proof. Applying going up to R/p1 C S/q; and the prime ideals p2/p;. |
Lemma 15.8. Let R C S be domains and S is integral over R. Then R is a field if and only if S is a field.

Proof. Assume R is a field. Let s € S be non-zero. The subring R([s] is a domain, and it is a finitely
generated R-module. Since R is a field, this is a finite dimensional vector space. A domain that is
finite dimensional vector space is a field, so R[s] is a field.
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Assume S is a field. Take r € R non-zero. Then r—! € S is integral over R, so there is an equation
r 4 +ap=0

with a; € R. Multiplying by r"~!, we get that ! is a polynomial in r with R coefficients, so
r~leR. [

Lemma 15.9. Let R C S be rings and S integral over R. Let q be a prime ideal in S and p = q N R. Then
p is a maximal ideal in R if and only if q is maximal in S.

Proof. Look at the induced map R/p — S/q which is injective since p = q N R. These are both
domains, and R/p — S/q is an integral extension by just writing down the equation and mod p.
Then we are done by the previous lemma. [

16. LECTURE 16: 2023.10.31

Lemma 16.1. Let R C S be rings and S integral over R. If q1,qq are prime ideals of S, q1 C qo and
nNR= qgﬂR,then q1 = qo2.

Proof. Letp = q;N R be the same intersection. Then R —p is a multiplicative subset of both R and S.
Localization preserves inclusion and intersection of submodules, so we have R, C S, = (R—p)~LS.
The local ring R, has a unique maximal ideal pR,. Also,

43:Sp N Ry = (4: N R)p = pp = pRy.

This means q;S, are maximal ideals in S, by Lemma 15.9 and the fact that localization preserves
integrality. Now q; C g2 implies q1.5;, = ¢2.5, since they are maximal ideals. We also know that

(R=p)Nqi C(RNqi))N(R—p)=pN(R—p)=2.

S0 415, = q25) are prime ideals in S, that corresponds to both q; and g2 under the bijection between
prime ideals in S, and prime ideals in S that avoids R — p, so we must have q; = q». |

Proof of the going up theorem. Start with R, S an integral ring extension and p a prime ideal in R. As
before, we have R, C S, = (R — p)*ls which is still an integral extension. Choose a maximal ideal
m in Sp. Consider m N R,. Lemma 15.9 implies that this is a maximal ideal in R,,. The ring R, is
local, so we must have

mN R, =pRy.

Letq = igl(m) where ig : § — S,. We have the commutative diagram

R,@LMS'Fl

i

R——=S
SoqnR=j"(ig'(m)) =ip'jy ' (m) =ig (pRy) = p. u
What does the going up theorem mean?

(1) For an integral ring extension S over R, the affine scheme map Spec.S — Spec R is surjec-
tive.
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(2) Suppose f : R — S is just an integral homomorphism and let I be the kernel of f. Then
R/I is a subring of S. Then f* : Spec S — Spec R factors as
Spec S — Spec R/I — Spec R

The first step is surjective and the second step is a closed immersion.

(3) If f: R — S an integral homomorphism, then f* is a closed map: if Z C Spec S is closed,
then f*(Z) is closed in Spec R.

(4) If f : R — S an integral homomorphism and S is a finitely generated R-algebra (so by
integrality S is a finite R module), then f* : Spec S — Spec R has finite fibers.

Geometrically, if g : X — Y is a map of affine algebraic sets over k£ which corresponds to a k-algebra
homomorphism f : A(Y) — A(X), then f being integral implies that g is a closed map, and g has
finite fibers.

Dimension in rings.

Let R be any ring. A chain in R is a sequence of strictly increasing prime ideals

po &SP & &bk
Note that the index starts at 0 and ends at k, and & is called the length of the chain.

Definition 16.2. The Krull dimension of a ring R is the maximal length of chains in R. It is denoted
by dim R.

The Krull dimension could be infinity, even in noetherian rings.

Example 16.1.
(1) If R is a domain then (0) is a prime ideal. Thus, dim R = 0 if and only if R is a field.

(2) If R is a PID that is not a field, then every non-zero prime ideal is maximal. So every
maximal chain looks like

0)cp
which has length 1. So the dimension of PIDs is 1.

(3) Let R = k[z,y] where £ is algebraically closed. We proved in homework that the prime
ideals are (0), (f) for f irreducible, or m = (z — a,z — b). Therefore a maximal chain looks
like

0) S (f)GCm
Therefore dim k[z, y] = 2.
(4) In k[x1,- -, x|, we have a chain
0) G (21) & (w1,22) G-+ G (21,0, 2n)

Later we will prove that this is a maximal chain.
If follows from the going up theorem that

Corollary 16.3. If R C S is an integral extension, then dim R = dim S.
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Proof. Given a chain
PoGP1 G &Pk

in R, the going up theorem implies that it can be lifted to a chain
Go&qa G G

where q; N R = p;. Therefore dim .S > dim R. On the other hand, given a chain
do &1 & &k

in S, we can let p; = gq; N R. The second state of going up implies q; # q;+1 for any i. Therefore we
get a chain

Po G PG &Pk
in R. So dim R > dim S. Hence they are equal. |

There is also the going down theorem.

Theorem 16.4 (Going down). Let R C S be an integral extension. Assume also that R, S are domains
and R is integrally closed (in its field of fractions). Suppose po C py are prime ideals in R, and q; is a prime
ideal in S such that q1 N R = py. Then there exists a prime ideal qa € S such that q2 C q1 and g2 N R = po.

We will not prove it.

Definition 16.5. If p is a prime ideal in R, the height of p is the maximal length of a chain that ends
at p. We denote it by ht p. The coheight of p is the maximal length of a chain that starts at p. This
is sometimes denoted by dim p.

We easily see that the height is dim R, and the coheight is dim R/p. From the definitions, ht p +
coht p is the max length of chains that contain p. In particular,

htp 4 cohtp = dim R.

If I is an arbitrary ideal in R, we define
ht I = min{htp | I C p}

and
coht I = max{cohtp | I C p}

The going up theorem says that if R C S is an integral extension, q € Spec.S and p = g N S, then
ht g < htp and coht p = coht g.

We move on to the topic of Noether normalization theorem. We need some field theory first. Let
K /k be a field extension. We say elements o, - - - , o, € K are algebraically independent over £ if
the evaluation map k[z1,--- ,x,] = K is injective. This means k(z1,- - - ,z,) embeds into K.

Definition 16.6. A transcendence basis of K /k is a set of algebraically independent elements
ay, 0, €K

such that K is algebraic over k(a1,- -, ap).
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Fact: these always exists if suitably defined (i.e. maybe you need infinitely many of them), and the
number of these is independent of the choice of 1, - - - , a,. Then n is the transcendence degree of

Suppose R is a k-algebra that is also a domain. We then think of R as a subring of K, its field of
fractions, and K/k is an field extension. We say elements in R are algebraically independent over
k if they are when considered in K.

Theorem 16.7 (Noether normalization). Let k be a field and R = [z1,--- ,xn]|/p where p is a prime
ideal in k[x1,--- ,xn]| (i.e. R is a finitely generated domain over k). Then there exists ay,--- ,aq in R
which are algebraically independent over k such that R is an integral extension of the ring klaq, - - - , aq).

We will only prove this if k is infinite (e.g. k is algebraically closed). In this case, «; are the images
of linear combinations of z;’s with coefficients in k. In fact,”almost all” linear combinations will
work.

What is a geometric interpretation of Noether normalization? Suppose k = k. A ring R as in the
theorem corresponds to X C AZY, and there is a linear projection AY — A¢. This gives a map
X — A{ that is surjective with finite fibers. We say X is a “finite branch cover” of A¢.

As a special case, let f € k[z,y] and X = V(f). After choosing coordinates correctly, X — A] is
a cover. For example, let X = V(zy — 1) be a hyperbola. If we just project to the z-axis then the
image doesn’t contain 0, so this is an incorrect way of projecting. In fact, if we look at

kl2] = Kl yl/(zy — 1) = klz,27"]
then this is not an integral extension. However, projecting to almost all other lines will work (not
the y-axis).

17. LECTURE 17: 2023.11.2

Proof of Noether Normalization. Assume R = k[ay,--- ,an] where g, -+ ,an are generators (not
the final answers!). The proof is by induction on N the number of generators. The base case NV = 0
is trivial.

Assume now the statement is true for all k-algebras that can be generated by N —1 elements. Again

let R = k[ai, - ,an]. If a1, -+, ay are algebraically independent, then we are simply done. So
assume oy, - - - , ay are not algebraically independent. We claim that there exists N —1 linear combi-
nations o of o;’s such that R = k[o), -+ ,a/y_;, an], and ay is integral over k[o], - - - , a/y_4]. If so,
the inductive hypothesis implies there exists 31, - - - , 54 algebraically independentin ko], - - - , &/y_,].
Then we have the tower of integral extensions

k[ﬁl, T ,ﬁd] - k[O/I’ T 70/]\7—1] - k[all) T 7a/]V—1][aN]
which implies R is integral over k[31, - - - , B4].
So now we prove the claim. Let P be a non-zero polynomial such that P(ay,-- -, ay) = 0. Write

D
P= ZPV
v=0

where P, is the degree » homogenous part of P, and Pp # 0. Because k is infinite(!), there exists
A1, , AN € ksuch that Pp(Ay,---,Any) # 0. This implies the polynomial P(Aq,--- ,An_1,1)
in ¢ is not identically 0. Therefore we may choose Any # 0 such that Pp(A1,---,An) # 0. Since
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Pp is homogenous, we may assume Ay = 1 by just dividing through. Set o/, = a; — A\jan for
1 < i< N — 1. Then of course
kloa, - ,an] = k[ad, -+, a/v_q, an]
since o = o} + \jay. Plugging back in Pp, we get
Pp(ai, - ,an) = Pp(a] + Man, -+ ,ay_1 + Av—1an, an)

The monomial of o} mustbe Pp (A1, -+, Ay—1, 1)ak. The assumption was that Pp (A1, -, An—_1,1)
is non-zero in k, so after dividing by it we obtain a monic polynomial in «y of degree d with coef-
ficients in k[o, - - - , &/y_;]. This shows ay is integral over k[o], - - - , &/y_,], and we are done. W

What happens if k is finite? We can still use induction, but instead of o, = a; — \jan, we use
o =a; + a]l\)/ for some large power. So the 3’s won't be linear combinations.

Corollary 17.1. Let K be a field extension over k which is a finitely generated k-algebra. Then K is a finite
extension.

Proof. Apply Noether normalization. There exists a subring k[a1, - -, 4] where o;’s are alge-
braically independent such that K is integral over k[aq,- -, oq]. But by going up, klaq,- -, aq]
is a field since K is integral over it. Thus d = 0, so K is integral over k, or equivalently algebraic
over k. Now finite generatedness of K implies K is finite over k. |

Corollary 17.2. Let k be algebraically closed and K be a finitely generated extension over k. Then K = k.
Proof. Follows trivially from the previous corollary. u

Corollary 17.3. Let k be algebraically closed and R be a finitely generated k-algebra. Let m be a maximal
ideal in R. Then the composition k — R — R/m is an isomorphism.

Corollary 17.4 (Nullstellensatz). Let k be algebraically closed. If m is a maximal ideal in the polynomial
ring k[zy,--- ,xy,), thenm = (1 —ay, - -+ ,xy, — ay,) for some ay, - - ,ay, € k.

Proof. Consider k — k[z1,- -, z,]/m, which is an isomorphism. So for all 7, there exists a; € k such
that x; = a; mod m. So z; — a; € m for all i, so m contains (x1 — aq,--- ,x, — ay), but the latter is
obviously maximal (e.g. because it is the kernel of the evaluation map at (a1, -- ,an)). [

When £ is not algebraically closed, let I C k[xy, - - ,z,] be any ideal. Then I is not the unit ideal if
and only if there exists aj,--- ,ap € k such that f(ay, - ,a,) =0forall f € I.

Theorem 17.5 (Nullstellensatz). Let k be algebraically closed and let I be an ideal in k[x1,- - - , xy]. Then
f(a) = 0 forall a € V(I) if and only if there exists N such that fN € I (ie. f € \/I). Namely,
1(V(1) = V1.

Proof. Suppose f% is notin I for any N. Consider the localization

k[xlv"' 7$n]f :k’[l'l,"‘ 71:7171/]0]
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which is a finitely generated k-algebra. Since fV ¢ I for all N, we know that I is not the unit ideal.
Choose a maximal ideal M in k[x1,- - , z,]f containing I;. Now m = 9 N k[zy, - - -, ,] contains [
and is a prime ideal. Now

kE— klxi, - xn)/m = klzy, - x,) /M= E

where the last isomorphism is by the previous corollary. The ring k[z1,--- ,z,|/m is captures in
the sequence of injections that composes to an isomorphism, so it must also be k, which means m
is a maximal ideal. We then getm = (z; — a1, ,z, — ay,) for some ay, - - - ,a, € k. The fact that
I C mmeans (ai,- - ,a,)isin V(I). We know that f ¢ 9, so f ¢ m, which means f(a) # 0. This
finishes the proof. u

Some related results:

(1) Finiteness of integral closure. Suppose R is a domain and K is its field of fractions. Let R
be the integral closure of R. In general, little can be said about R even when R is noether-

ian. Akizuki showed that there exists R noetherian such that R is not noetherian, and in
particular not a finitely generated R-module. But

Theorem 17.6 (Noether). Let R be a domain which is a finitely generated algebra over k. If K
is the field of fractions of R and L is a finite extension of K, then the integral closure Ry, in L is a
finitely generated R-module. In particular R is a finitely generated R-module.

Geometrically, if £ = k and X is an affine algebraic variety over k, then the coordinate

P

ring A(X) is a domain that is a finitely generated k-algebra. The integral closure A(X)
corresponds to another variety X, and we have an integral morphism X — X. This is
called the normalization. The map = : X — X has finite fibers, and is also birational:
there is a non-empty open subset U of X such that 771 (U) — U is an isomorphism. As an
example, k[z,y]/(y*> — x3) isa cusp X = V(y* — 2?) in the plane, and it injects into k[t] by
mapping y to t> and  to t2. This corresponds to the parametrization A} — X given by
t e (t2,13).

(2) Generalization of Noether normalization. Let k be a field and R be a domain that is finitely
generated over k. Suppose there exists a sequence of ideals

Lhc---Cl; CR
Then there exists o, - ,aq € R algebraically independent over k£ and a non-decreasing
sequence of integers 0 < hy < hy such that R is integral over k[aq, - -, oq] and for all ¢,
Kl -+ yag) NI = (o, -+ ap,).
What does this mean? In k[x1, - - - , z4], there is a standard filtration (1) C (z1,22) € --- C

=

(x1,- -+ ,z4). This statement says in finitely generated domain over k this is somewhat true.

Corollary 17.7. dim k[z1, - ,zp] = n. ht(xy, -+ ,z;) =4, and coht(z1,- - ,2;) =n — 1.

Proof. We know a chain of lenght n, so we just need to show the opposite. Given a chain of
prime ideals

o & - & P,
we apply the above result, so we obtain an integral extension ka1, - - -, aq) C k[x1, - - , 2]

where o, - - - , ag are algebraically independent, and p;Nk[a1, - - - , a4]isequalto (aq, - - , ap,).
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First of all d = n because a1, - - - , aq is a transcendence basis. Moreover, by going up, we
know that p; N kfa, - -+ , a4 is not equal to p;+1 N k[aq, - - -, ag]. This shows that the num-
bers h; are strictly increasing. The maximal possible value for h; is d = n, so we must have

k #£ n.
The statements about height and coheight of (x1, - - - , z;) follows from the the fact that
ht(xy, -+, x;) + coht(xy, -+ ,z;) < dimk[zy, -+, 2, = n.
|

Corollary 17.8. If R is a domain that is fintiely generated over a field k, then the dimension of R is equal to
the transcendence degree of its field of fractions. If y is a prime ideal in R, then ht p + coht p = dim R.

Proof. Generalized version of Noether normalization and going down. n

Geometrically, R corresponds to some variety X. The prime ideal p corresponds to some closed
subvariety Z C X. The the corollary implies coht p = dim Z and htp = dim R — dim Z.

18. LeCURE 18: 2023.11.9

We start talking about the Picard group and the ideal class group of a ring R.

Definition 18.1. An invertible R-module M is a finitely generated R-module such that there exists
an R-module M’ such that M @ M’ = R as R-modules.

We will show that if M’ exists then it is also finitely generated. If M’ exists, then it is unique up to
isomorphism. In fact, M’ will be the dual of M.

Theorem 18.2. M is invertible if and only if M is finitely generated, projective, and for all prime ideals p,
M, = R,.

We say M is “locally free of rank 1”. This is the algebraic version of line bundles on Spec R. It is in
fact enough to consider all maximal ideals. There is a Zariski local criterion which is in the HW.

Proof. Assume M is invertible. Fix M’ such that M ®r M’ = R. First we show that M, = R, for all
prime ideals p. The first step is to do this in the case where R is local and m is its maximal ideal.
Let k = R/m. We have
(M@RM/)(X)ngk
The left side is isomorphic to
(M KRR k) Rk (M/ KRR k)
So as k-vector spaces, (M ®g k) ®j (M’ @r k) = k. Considering the dimension, we obtain that
M/mM =M @pk=kand M'/mM =2 M @pk=k

So there exists m € M that generates M /mM . Using the assumption that M is finitely generated,
we can use Nakayama’s lemma to conclude Rm = M, so M = R/I where [ is the annhilator of m.
Letr € I, sorM = 0. This implies (M ®r M') =rR =0,sor = 0. Hence I = 0 and M = R.

In the general case, obesrve that M is invertible implies M, is invertible over R,. This is because
we can localize the isomorphism M ® g M’ = R. Now by the local case discussion, we get M, = R,
for all p.
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To prove M is projective, we need

Lemma 18.3. If M is invertible, then M is flat over R. In fact, M is faithfully flat: it is flat, and for all
R-modules N, N = 0 if and only if M ®r N = 0.

Proof. We have that M, is free, and hence flat over R,. Flatness is a local property, so M is flat. If
M®rN =0,then0 =M @r M @z N = N. [ |

Lemma 18.4. If M is invertible and M ®@p M’ = R, then M’ is also finitely generated, and therefore
invertible.

Proof. There exists my,--- ,my € M and m{,---,m} € M’ such that >~ m; ® m, maps to 1 in R.
We claim that m/, - - - ,m), generate M’. There is map R¥ — M’ defined by sending the basis to
mi,---,m). Let Q be the cokernel of this map. We have
RF S M 5 Q—0
Tensoring with M, we get
MFY Mo M — MegQ — 0
The image of the first map ¢ contains ) m; ® m, so it is surjective since it contains 1 if we pass to

the isomorphism to R. This implies M ®r Q is zero, and faithfully flatness of M implies @ is zero.
Hence R*¥ — M’ is a surjection and M is finitely generated. |

Lemma 18.5. If M is invertible, then M is in fact finitely presented.

Proof. Finitely generatedness gives an exact sequence
0—-K—=R"—-M—0

Let M’ be such that M ®p M’ = R. We know that M’ is also invertible, so it is faithfully flat.
Tensoring with M’, we get

0 K®rM — (M) = Mg M —0

We have that M ®r M’ = R, so in particular it is projective, and thus the exact sequence splits.
Hence

(M'"~R& (K ®r M)
This implies K @ M’ is finitely generated. Hence K ®r M’ ®r M is also finitely generated, but
this is just isomorphic to K. u

These lemmas in summary says that M is finitely presented and locally free. A previous result
(Proposition 13.7) implies M is projective (in fact these condition is equivalent to projective and
finitely generated). This completes of the first half of the theorem.

Now we assume M is finitely generated, projective, and locally free of rank 1. Again Proposition
13.7 implies M is finitely presented. We claim that A/’ = Hompg(M, R) is an inverse. We always
have a natural map

M ®r Homg(M,R) - R
by evaluation. We want to show this is an isomorphism. Isomorphism can be checked locally at
all prime ideals, so consider the localization

M, ®r, Homgr(M, R), — R,
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Because M is finitely presented, we have Hompg (M, R), = Homg, (M, Ry,). (Localization com-
mutes with Hom when the source is finitely presented.) After these identification,

Mp ®Rp Home (Mp, Rp) — Rp

is the evaluation map, and it is an exercise to show it is an isomorphism. This finishes the proof of
the Theorem. u

Proposition 18.6. Pic(R) is an abelian group under tensor products.
Proof. Routine. [

As an example, if R is a noetherian UFD, then Pic(R) is trivial group. But this converse is not true.
In fact, a theorem is that if R is a noetherian domain, then R is a UFD if and only if R, is a UFD for
all primes p and Pic(R) = 1.

Assume now R is a domain, and K is its field of fractions.

Definition 18.7. A fractional ideal of R is an R-submodule M of K such that there exists r € R
non-zero such that rM C R.

If M is a finitely generated submodule of K, then M is a fractional ideal since we can clear the
denominators of the finitely many generators. If a fractional ideal M is already in R, then it is an
ideal. If A € K*, we can define () to be the principal fractional ideal RA C K. It is a principal
fractional ideal. If M is a fractional ideal and rM C R, then rM is an ideal in R.

Lemma 18.8. if My, M are two fractional ideals, so are My + Mo, My N Moy, My Ms. So is
(M1 : MQ) = {)\ e K,AM, C Ml}

Definition 18.9. R, K asabove. An R-submodule M of K is invertible if there exists an R-submodule
M’ of K such that MM’ = R.

Lemma 18.10. If M is invertible, then M is finitely generated, and hence a fractional ideal.

Proof. The equality MM’ = R implies there exists a finite list «; € M and 8; € M’ such that
1 =), a;f3;. We claim that M is generated by «;’s. Take m € M. Then

m=1-m= Zai(ﬂim).
i
Notice that ;m € MM’ = R, so m is generated by «;’s. [ |

Lemma 18.11. If M and M’ are such that MM' = R, then M' = (R : M).

Proof. If MM' = R, then M’ C (R : M) by definition. Conversely, we know that M (R : M) C R.
Multiplying by M’, we get R(R: M) = (R : M) C M. [ |

Lemma 18.12. If M, --- , M, are invertible, then so is M = M; - -- M,,. Conversely, if M is invertible,
then so are the M;’s.
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Proof. If M is invertible, we can consider M ! (I1iz; Mi). This is obviously the inverse of M;. W

Let 7 be the set of all invertible fractional ideals. Then Z is an abelian group under multiplication of
fractional ideals. We have a group homomorphism K* — 7 sending A to the principal fractional
ideal (A). The kernel of this map is just R*.

Definition 18.13. The ideal class group CI(R) is defined to be the cokernel of the map K* — 7.

19. LECTURE 19: 2023.11.14

Theorem 19.1. For a domain R, we have C1(R) = Pic(R).

Proof. If M is an invertible fractional ideal, we can consider it as an R-module. We want to show it is
an invertible R-module. We know it is finitely generated. So we need to show that M is projective,
and locally free of rank 1.

There exists a fractional ideal M’ such that MM’ = R. Write 1 = )" | m;m} where m;, m/ are in
M, M’ but ultimately in K = Frac(R). We define

f:R"—> M
FOro, - ym) =Y rim;

In the reverse direction we have
g: M — R"
g(m) = (mmy,--- ,mmy,)

Then easily f o g is the identity on M, so M is a direct summand of R", hence projective.

We know that finitely generated and projective implies M is locally free. We must show that it is
rank 1 at every prime ideal. We have

M, ®p, K = R ®p, K = K*
But M, ®pg, K is contained in K ®g, K = Koy = K. Thusd = 1.

Conversely, given an invertible R-module M, we have
M®r K= (M®R,) ®r, K= Ry®r, K =K

Also M injects into M ®r K = K because it is torsion free. Thus, M is isomorphic (but not
canonically) to some R-submodule of K. We know that M is finitely generated, so M is now seen
to be a fractional ideal.

Lemma 19.2. If My, M are two non-zero fractional ideals, then My = My as R-modules if and only if
there exists A € K* such that A\My = Ms. In fact, Homp (M, M) = {\ € K | AM; C My}

Proof. Let ¢ : My — Ms be an R-linear map. Choose a € M; non-zero. Then ¢(«)/« is some
element in K. Observe that for any r € R non-zero, then ¢(ra)/(ra) = ¢(a)/c. Let 5 be another
non-zero element. Then ¢(5)/5 = ¢(a)/c. This is simply because 5 = (r/s)a for some non-zero
r,s € R. This shows that if we let A = ¢(a)/a, then ¢(«) is just multiplication by A. [
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Lemma 19.3. If My, M> are two fractional ideals which are invertible as R-modules, then

MMy = My ®g Ms.

Proof. We have a natural map M; ® g My — M;Ms. On pure tensors it is m; ® ma — mymg. Thus
it is surjective. We want to show that it is injective. We check locally at every prime p.

We know that (M, M), is a non-zero R,-module, because M; M, is non-zero R-module and M; M,
is torsion free, so it injects into (M;M3),. On the other hand

(My @R Ma)p = (Mr)p @r, (M2)y = Ry = Ry = R,
So we obtain a surjection
Rp — (MlMQ)p

by exactness of localization. Thus (M;M>), is a quotient of R, by some proper ideal I. If I # (0),
then (M M), has I-torsion, but (M M), C K is torsion free. Thus I = (0) and R, = (M;M>)j.
In particular (M ®r Ma), — (M1 M>), is injective. [

Corollary 19.4. If M is a fractional ideal that is invertible as an R-module, then M is an invertible fractional
ideal.

Proof. We know that there exists another invertible R-module M’ such that M ®x M’ = R. By the
discussion before the lemmas, we know that M’ can be viewed as a fractional ideal. Then the above
lemma implies MM’ = M ®r M’ = R. As such, we must have MM’ = AR for some A € K. Now
M(A\"'M') = R, so M is an invertible fractional ideal. [

Note that in the corollary there is an ambiguity of a constant A € K*, so this establishes the iso-
morphism between CI(R) and Pic(R) since we mod out by principal fractional ideals.

A brief digression.

Let R be a ring and M be an R-module. Recall that M is noetherian if any increasing chain of
submodules is eventually constant. This is equivalent to that every non-empty collection of sub-
modules has a maximal element. M is artinian if the reverse condition is true.

Definition 19.5. An R-module M is simple if it is non-zero and there is no non-zero proper sub-
module.

If M is simple and m € M non-zero, then Rm = M. Hence M = R/I for some ideal I. But also
this says R/I is simple, so any J containing / must be just / or R, so I is maximal and R/I is a field.
Definition 19.6. 1/ is of finite length if it has a composition series

0=MyC---CM,=M
with M;/M;_ are all simple.
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This is a very special property. If a composition series exists, then the length of such composition
series is independent of the choice of the composition series. Such length is then defined to be the
length of M. Also the quotient M;/M;_; are independent of the choice of the composition series,
up to reordering.

Now we turn to ideals in noetherian rings.

Theorem 19.7. If I is a proper radical ideal in R a noetherian ring, then I is an intersection of finitely prime
ideals. Let I = p1 N --- N py, be a non-redundant intersection, then p;’s are unique up to order.

Proof. Let X be the set of proper radical ideals which are not a finite intersection of prime ideals.
Assume for contradiction that X is non-empty. Choose a maximal element I in X which exists since
R is noetherian. First I is not prime, so there exists , s € R such that r, s ¢ I butrs € I. Consider
the ideal / + (7). This is a proper ideal, because otherwise a + tr = 1 and then sa +trs =s € I, a
contradiction. Also I+(r) strictly contains /. Likewise I+ (s) have these same properties. However,
we claim that I = (I + (r)) N (L + (s)). If x € (I + (r)) N (L + (s)), then
T =a1+tr =a+ 128

Then

22 = (a1 + tﬂ")(ag + tQT) =a1C + asD + tth(TS) el
Since [ is radical, we get that € I. Hence I = (I + (r)) N (I + (s)). Hence

I=VI=vT+)NT+(s) =VI+(r)NVI+(s)

Both /I + (r) and /I + (s) are proper radical ideals strictly containing I, so they are intersections
of finitely prime ideals. This implies I is also an intersection of finitely many prime ideals. This is
a contradiction.

For uniqueness, say
prO-NPpp=q1 N NQm
This is a subset of q; for all 7, so

G €V(p1N---Npy) =V(p1)U--- UV (py)

So there exists some j such that q; C p;. Similarly p; C g; for some . But there is no redundancy,
so q; C p; C q; implies all three are equal. [ |

Corollary 19.8. If R is noetherian and X C Spec R closed, then there are finitely many irreducible subsets
i, Yy suchthat X =Y, U---UY,. Then Y’s are unique is there is no redundancy.

We say that Y’s are the irreducible components of X. Geometrically if X is a closed algebraic subset
of A}, then there exists closed irreducible subset Y7, - ,Y; such that X = Y; U---UY]. A typical
example: let f € k[x1,--- ,zp] is a non-constant polynomial, then we can factor f = pips - - - p; into
irreducible polynomials, and V(f) = V(p1) U--- U V(py).

Corollary 19.9. If R is noetherian, there are finitely many minimal (i.e. height zero) prime ideals. If
VO =piN---Np, with no redundancy, then p1, - - -, py, are the minimal primes.

The case for non-radical ideals is the theory of primary decomposition. We will skip. We start a
discussion of artinian rings.
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Theorem 19.10. A ring R # 0 is artinian if and only if R is noetherian and dim R = 0 (i.e. every prime
ideal is maximal)

For example, a field is artinian, and a finite product of fields is artinian. If R is a noetherian ring and
m a maximal ideal, then quotient R/m” is noetherian and has dimension 0 because every prime
ideal in R/m” corresponds to a prime ideal p containing m”" and thus m. So R/m” has a unique
prime ideal that is maximal.

Proof.
Lemma 19.11. An artinian domain is a field.

Proof. Let R be an artinian domain. Let » € R be non-zero. We have a decreasing sequence of

ideals
(2@ 2
T.Tl

2
So there exists an n such that (r"*1) = (r"). So r™ = cr"*! for some unit ¢, so 1 = cr since we are
in a domain. [

Lemma 19.12. If R is artinian, every prime ideal is maximal.

Proof. Let p be a prime ideal. Then R/p is an artinian domain, so it is a field, and so p is a maximal
ideal. |

Lemma 19.13. If R is artinian, then R has only finitely many maximal ideals

Proof. Let X be the collection of all ideals of the form m; N -- - N my where m;’s are maximal. X is
not empty since there is a maximal ideal, and the artnian condition gives a minimal element in X.
Say my N --- N mg. We claim that any maximal ideal is some m;. Let n be a maximal ideal. Then
nNmy N---Nmyg is some element in X, so we have

nnmyN---Nme=myMN---Nmg

This implies n contains m; N --- N mg. Then n contains some m; because it is prime (think about
V’s), and so n = m;. [ ]

Lemma 19.14. If R is artinian, the nilradical N = +/0 is a nilpotent ideal, i.e. N* = (0) for some k > 0.

Proof. The decreasing chain N O N2? D ... stabilizes, so N¥ = Nkl = ... Let I = N¥, so
I? = N2 = [ If I is not (0), let X be the collection of ideals .J such that JI # 0. Note that X is not
empty because I? = I # (0). So X has a minimal element, say .Jo. Then there is some r € Jy such
that rI # (0), and thus (r)I # (0). Hence Jy = (r) by minimality. But also (r1)I = rI? = rI # 0,
so 1l is also in X. This implies I = (r) by minimality again. So there exists some s € I such that
sr = r. Replacing r by sr, we obtain that s"r = r for all n > 0. Since I = N* C /0, we know that
for some n, s™ = 0. so in fact r = 0. Hence Jy = 0 but that’s a contradiction. [ |

Now we are almost done proving an artinian R is noetherian. We know that /0 is the intersection
of all prime ideals, and when R is artinian we showed that this is the same as the intersection of
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all maximal ideals, and there are only finitely many. So let V0 = m; N -+ N mg. We have that for
some NV,

N
VO =0)=mn---nmp)VN omd...md.

Thus my ---m¥ = 0.

Let I be an ideal of the form m{* ---m}*. Then I is an artinian R-module. Consider I/m;I. It is

an artinian R-module, but also an artinian R/m;-module, which is a vector space. Being artinian

implies I /m;I is finite dimensional. So I/m;I has a composition series.

Consider the filtration by ideals

and call them Iy, - - - , (0), and each I,,/I,,;1 has a composition series. This implies R has a compo-

sition series, which implies R is noetherian.

Now we prove the converse. Assume R is noetherian and dim R = 0. In a noetherian ring, every
radical ideal is an intersection of finitely many prime ideals. So let v/0 = m; N - -- N my, where each
is maximal because we assume dim R = 0. Every ideal contains a power of its radical, so we have

0) D (myN---Nmp)¥ 2w .. .m?,

Doing the composition series proof again to see that R has a composition series, and thus artinian.
|

20. LecTURE 20: 2023.11.16

Corollary 20.1. Let R be a noetherian local ring with maximal ideal m. Then either m™ # m"™*! for any n,
or R is artinian.

Proof. If m" # m"™*! for any n then clearly R is not artinian. Otherwise, m” = m - m". The ideal m"
is a finitely generated R-module, so Nakayama’s lemma implies m"™ = 0. Let p be any prime ideal,
then p contains /0 which contains m because m™ = 0, so p = m. |

Theorem 20.2. If R is any artinian ring, then R is a product Ry x - - - x Ry, where R;’s are artin local. The
product is unique up to order and isomorphism.

We turn to Dedekind domains. We keep the basic assumption that R is noetherian domain with
dimension 1. In this case, the dimension assumption is equivalent to saying that every non-zero
prime ideal is maximal.

Theorem 20.3. Let R be as above. Assume R is local, with wm its maximal ideal, k the residue field, and let
K be its field of fractions. Then the following are equivalent:

(1) Ris integrally closed

(2) wis principal

(3) dimm/m? =1

(4) there exists some t € R such that if I # (0) is an ideal, then I = (t*)

(5) every non-zero ideal in R is m* for some k.
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Definition 20.4. If R satisfies any (all) conditions in Theorem 20.3, we say R is a discrete valuation
ring (DVR). t is called a local uniformizing parameter (uniformizer).

Proof of Theorem 20.3. First, some remarks: if I # (0) is an ideal in R, then /T is the intersection of
all prime (hence maximal, by dim R = 1) ideals containing it, but there is only one maximal ideal,
so v/ I = m. Also m" # m"*! for any n since otherwise R is artinian and has dimension 0.

We first show 1 implies 2. Choose r € m non-zero, then y/(r) = m. Hence there exists some
m” C (r). By taking the smallest we can assume m"~! C (r). So choose s € m"~! — (r). Let
t=r/s € K* (s# 0since 0 € (r)). Thenrt~! = sisnotin (r), so t~! is not in the ring R. Now
consider t~'m. We have

] 1 1 1

t'm="mc-m" 'm=-mcC -(r)CR

T r T r
Therefore t~'m is an actual ideal of R. We claim that ¢~ 'm is not contained in m, because otherwise
t~'m C m s finitely generated, so ¢! is integral over R. By assumption 1 we have t ! € R, but we
showed t7! ¢ R. Thust'm = R,som = tR = ().

Now we do 2 to 3. If m = (¢), then t mod m? spans m/m?2. Also t ¢ m? because m/m? = 0 will make
dim R = 0. It is also clear that 3 implies 2. Take some basis vector of m/m? and lift to some ¢ € m.
Nakayama’s lemma implies m = ().

Next we show that 2 if and only if 4. Clearly 4 implies 2. Assume m = (t) is principal. Let I be a
non-zero proper ideal. We claim that there exists n such that I C m” but not in m"*. If not, then
I C m**! for all k. We know that there is some k such that m* C I because v/I = m, but then
m* ¢ mF*1 C m*, which implies m* = m**! which we know is not the case.

So we can choose some s € I —m""! butin m" = (t"). So let s = at™ for some a € R. The choice
s ¢ m""! means that a ¢ m. But R is local so a is a unit. Thus (s) = (t*) C I C m" = ("), so
I = (t"), as desired.

We want to show 4 if and only if 5. 4 implies 5 is obvious. Assume 5. Choose t € m — m? which
is non-empty. Then (t) = m* by assumption 5. We must have k < 2 and so k = 1, which means
m = (¢). So 2 is true and so 4 is true.

It remains to show any of 2 — 5 implies 1. Assume 4, then R is a PID and hence a UFD, which is
integrally closed. n

For a DVR R, we can define a function v : R — {0} — Z>o by v(r) = k where (r) = (t*) where ¢
is the uniformizer (m = (¢)). It is easy to see that v(rs) = v(r) + v(s), v(t) = 1, and v(a) = 0 if
and only if a is a unit in R. This extends to a function v : K* — Z by v(r/s) = v(r) — v(s). By
construction v is a surjection K* — Z. This is the discrete valuation.

Some properties:
(1) v(a) > 0if and only if « € R — {0}, and v(«) > 0 if and only if &« € m — {0}.

(2) If a+ 5 # 0, then v(a + 8) > min{v(«), v(B)}. This is seen by writing «, 8 in terms of the
uniformizer ¢.
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Example 20.1. Let R = Z(p). It is a local, noetherian, dimension 1. For o € K*, write a = p*f
where 3 = r/s and r, s are not divisible by p. Then v(«) = k.

Example 20.2. Let R = k[x](,_,). The field of fraction is k(z), the field of rational functions. Any
such function A can be written as ;
kJ

g
Then v(h) = k. This measures the zero/pole of h at a.

(z —a)

The above is the local picture. Globally, we have

Theorem 20.5. Let R be a noetherian domain that is not a field. Then the following are equivalent:
(1) dim R = 1 and R is integrally closed
(2) for all non-zero prime ideals p, Ry, is a PID

(3) Given a prime ideal p, there exists a t € R such that every ideal in Ry, is (t*) for some k
Definition 20.6. If R satisfies any (all) conditions in Theorem 20.5, we say R is a Dedekind domain.

Proof. 3 to 2 is obvious. 1 implies 2 because R,, is integrally closed with dimension 1 by property of
localization, so 2 is true by the previous theorem. 1 implies 3 is also by the previous theorem and

It remains to prove 2 implies 1. We claim that dim R = 1. Let p be a prime ideal in R that is non-
zero. It is then contained in some maximal ideal m. By assumption 2 we know that Ry, is a PID
that is local, so it contains a unique non-zero prime ideal mRR,,,. Using the correspondence of prime
ideals, we see that p must be m. So every non-zero prime ideal is maximal, and hence dim R = 1.
Also, R is integrally closed because being integrally closed is a local property. [

21. LECTURE 21: 2023.11.21

Theorem 21.1. Let R be a Dedekind domain. Then every non-zero fractional ideal of R is invertible. In
particular, if I is the set of non-zero fractional ideals, then Z is a group under multiplication. If I is a non-zero
proper ideal, then I is a product of prime ideals, unique up to order.

If R is just a domain (not necessarily noetherian), then these conditions may not be true but they
are all equivalent, and they are equivalent to the condition of being a Dedekind domain.

Proof. Let I be a non-zero ideal of R. Since R is noetherian, I is finitely presented. For any prime
ideal p, the ideal I, is a non-zero ideal in R}, which is a PID. Thus I, is free of rank 1. The conditions
finitely presented + locally free of rank 1 implies I is invertible. Now if M is a non-zero fractional
ideal, it is isomorphic as an R-module to an actual ideal, so M is an invertible R-module. Hence it
is also an invertible fractional ideal. This proves the first statement.

Suppose there exists a non-zero proper ideal I which is not a product of prime ideals. Since R is
noetherian, we may take Ij to be a maximal element with such property. Iy cannot be a maximal
ideal since that’s a one-term product of prime ideals. So there exists some maximal ideal m with
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Iy C m. Using the previous statement, m and Ij are invertible, so m 1y CR ButRCm ! = (R:
m), so we get

Iy C milfg C R.
Notice that m~'Ij # R since otherwise Iy = m. Also m~!I; # Iy because otherwise Iy = mI, (and
we can then localize at m, by Nakayama’s lemma Iy C (Ip)m = 0, a contradiction). Then m~1Ij is a
proper ideal that strictly contains I, so it is a product of primes. But then so is I, a contradiction.
This proves the existence of prime ideal factorization.

For uniqueness, if

then gq; must be contained in p; for some 4, but the dimension 1 property means this is an contain-
ment of maximal ideals, so they must be equal. These prime ideals are all invertible, so we can
cancel them from both sides. Keep going we get uniqueness. [ |

Corollary 21.2. Any fractional ideal M # 0, R is uniquely (up to order) written as a product
p‘i‘l - pzk

where p;’s are distinct prime ideals, and a; € Z —{0}.
Definition 21.3. If I, J are two non-zero ideals, say J|I if there exists an ideal J' such that I = J.J'.

Lemma 21.4. Let R be a Dedekind domain. Then J|I if and only if I C J.

Proof. J|I implies I C J trivially, in any ring. If I C J, then J~'I C Ris an ideal. So I =
J(J1D). m

Proposition 21.5. Let R be a Dedekind domain. The following are equivalent:
(1) CI(R) =0
(2) Risa PID
(3) Risa UFD

Proof. The equivalence of 1 and 2 is just the definition of C1(R). Any PID is UFD. So assume R is
a UFD. Let p be a non-zero prime ideal. Pick some r € p non-zero. Since R is a UFD, we factor
r into irreducible, and one of the irreducible factors is in p. Thus we may assume 7 is irreducible.
The ideal (r) is then a prime ideal contained in p, and the dimension 1 condition says this is a
containment of maximal ideals, so p = (7). Hence all prime ideals are principal. Now if I is any
ideal in R, writing it as a product of prime ideals implies that it is principal. |

Let R be a Dedekind domain. Let p be a non-zero prime ideal. Then on K*, we have a valuation
vp : KX — Z:ifr € Ry and rR, = (t*), then vy(r) = k. Also, if I is a non-zero fractional ideal, then
write

I = p‘lll e pzk
then we can define v, (1) = a; if p = p;. This is multiplicative, and it agrees with the valuation on
elements: (r) = p{* - --py*, then Ry, = (t;*) where t; is the uniformizer. Thus v, (r) = v, ((r)).



54 NOTES BY WENQI LI

If R = Z and p = (p), then v, is the p-adic valuation. If R = A(Y) where Y is an affine algebraic
curve (variety of dimension 1) and A(Y) is integrally closed (Y is smooth), then the maximal
ideals of R corresponds to points on Y. If m corresponds to a point =, and ¢ is a uniformizer at
(i.e. mRy = (t)), then v, (f) measures the order of the zero (or minus the order of the pole) of f
at x.

Facts: Let M be a non-zero fractional ideal.
(M) = 0 for all but finitely many p
(2) vp(M) = 0for all p if and only if M = R.
(3) vp(M) > 0for all p if and only if M C R.
(4) vp(MiMa) = vy(Mi) + vy (M), and vy (M ") = —v, (M).
(5) My C M, if and only if v, (M) > vp(M>) for all p.
(6) vp(My + Ma) = min{v, (M), vy (M)}
(7) vp(My N My) = max{vp(M1), vp(M2)}

To see (6), notice that M; + M, is the smallest fractional ideal containing M; and M,. If M; =
pit - ppt and My = pbL ... pb, then the smallest fractional ideal containing M, My is p{* - - - p
where ¢; = min{a;, b; }. For (7) it is the reverse argument.

Extensions of Dedekind domains.

Let R be a Dedekind domain, and K its field of fractions. Let L be a finite separable extension over
K. Let R be the integral closure of R in L. We have seen that R is a finitely generated R-module,

s0 R is also noetherian. An integral extension has the same dimension, so dim R = 1. Thus R is
also a Dedekind domain.

The Krull-Akizuki theorem says that this is true even if L is not separable.

Let n denote the degree of L/ K. The basic issue to compare factorization of ideals in R and R. We

introduce some notation. Let p be a non-zero prime ideal in R. Then pﬁ is some ideal in R, so we
can factor

PR =P Py
Definition 21.6. In the above factorization, we say B lies over p if 3 appears in the factorization.

Lemma 21.7. The following are equivalent:
(1) *B lies over p
(2) pRCP
B)plPNR
(4) p=PNR



COMMUTATIVE ALGEBRA 55

Proof. 1,2, 3 are trivially equivalent. If p C B N R, then since B N R is a non-zero prime ideal in R
which is maximal, they must be equal. n

Definition 21.8. In the situation N

pR:{B? ir,
we say e; is the ramification index of p at *B;. If e; = 1 we say p is unramified at 3;. Otherwise we
say p ramifies at ;.

We have field extensions R/p < R/%;. Let f; be the degree of this field extension. This is called
the residue field degree.

If pﬁ = B¢ (has only one term in the factorzation) and f = 1, we say p is totally ramified. If
e; = fi = 1 for all i, we say p splits completely. If pR = 3, we say p is undecomposed (inert?).

In the geometric case, for simplicity let k& be algebraically closed and let R = k[z], which is the
affine coordinate ring of A}. (One can replace A} by some irreducible smooth curve X, so A(X)
has dimension 1 and integrally closed.) Assume R C A(Y) = Rwhere Y is an irreducible smooth
curve. A(Y) is also a Dedekind domain. We have the corresponding finite field extension K (X) C
K(Y). In this case, the Nullstellensatz implies that R/p and R/ are always just k, so the residue
field degree are always 1. Prime ideals in A(X') corresponds to points m,,z € X, and prime ideals
in A(Y) corresponds to points m,,y € Y. The inclusion A(X) — A(Y) corresponds to a map
m:Y — X, and my lies over m,, if and only if 7 (y) = .

Say
m, A(Y) =mg} - mk.
Let ¢ be the uniformizer at z. Then

7 (B)A(Y ), = M5 A(Y )

This is analogous to “branching” on Riemann surfaces.

Y

Theorem 21.9. In the situation
pé = ;’Bil e ira

2

we have

Proof. Fix p. The localization Ep is torsion-free, and hence a flat R,-module. R, is a local ring, so
R, is a free R,-module. Thus R, = (R,)" by tensoring with K.

The quotient R/pR is a vector space over R/p of dimension n by tensoring with K. On the other
hand, o _
R/pR= R/P™ x - X R/P
So it suffices to show that ﬁ/ P has dimension e; f; over R/p. Consider
0OCPFCcRFc---CR
Each P¢ /B is a vector space over R/p and over R/;. We have

dimpy, Bf /P = fidimp o B /P
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But B¢ /P! is one-dimensional (after localizing it is principal). Going through the filtration we
see that R/B¢ has dimension e¢; f; over R/p. |

As an example, R = Z and R = Z[i]. The primes are 1 + 4, p congruent to 3 mod 4, and © where
N () is prime congruent to 1 mod 4. The prime 2 ramifies: (2) = (1 +i)? herer =1,e=2, f = 1.
If p is 3 mod 4, then p remains prime in Z[i] is inert, but Z[i]/p Z[i] is F 2. If p is 1 mod 4, then
(p) Z[i] = (m)(7), so p splits completely.

22. LECTURE 22: 2023.11.28

The last topic of the course will be dimension theorems and applications. First we discuss graded
rings. Recall that a graded ring is a direct sum (as abelian groups) R = ®,>0R, where R, R, C
Ryy4n. The piece Ry is a subring, and Ry = ®,>0R, is an ideal. A graded module is similar:
M = @®,>0M,, where M,, are abelian group summands and not R-submodules. However, they
are Ryp-modules.

Let R be any ring and I an ideal. We define the blowup algebra B;(R) = RGIDI* D+ = @p>ol™
with the convention I° = R. Itis clear that I"]™ = I"™"™, so this is a graded ring.

View I as an ideal in B;(R). It has degree zero, and IB;(R) = I & I? @ - - - living inside B;(R)
compatibly. We can then take the quotient and define

gt (R) = (R/I)® (I/I°) @ -
The multiplication gives (I"/I"T1)(I™/I™+Y) C [vFm/[tm+L g0 this is a graded ring.

Similarly constructions can be done for modules, and we can obtain graded modules over B;(R)
and gr;(R).

Example 22.1. Let R = k[z1,--- ,z,] and let m = (z1,---,2,). Then gr,(R) is R itself again,
because R/mis k, and m/m? = ka1 @ --- @ kx,, the degree 1 monomials, and so on.

Lemma 22.1. Let R = @®,>0R,, be a graded ring.
(1) R is noetherian if and only if Ry is noetherian and R is a finitely generated Ry-algebra.

(2) If R is noetherian and M = @,,>0M,, is a finitely generated R-module, then M, is a finitely gener-
ated Ro-module for all n > 0.

Proof. If R is noetherian then any quotient of it is noetherian, so Ry is noetherian. Also, R, is an
ideal in R, so R is finitely generated, say by si,--- ,s;. We can assume s; are homogeneous of
degree d; (if not, just take the homogenous components). Then any r € R,, for n > 0is of the form
Y ris; with r; € R,,_g, by considering the degree. Inductively doing this (replace r;’s with sums
of smaller degree ones), we get that r is a sum of monomials in s;’s with coefficients in Ry. This
means that the map Ry[s1,---,s,] — R is surjective since it is surjective in every degree, so R is
finitely generated over R,.

Conversely, suppose Ry is noetherian and R is finitely generated as a Ry-algebra. Then R is a
quotient of Ry[z1,- - , x|, which is noetherian by the Hilbert basis theorem, so R is noetherian.

For the second statement, again let s1, - - - , s be homogenous generators for R of degree d;. Sim-
ilarly since M is finitely generated, let my,--- , m; be homogenous generators of M of degree e;.
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Then M, is generated by
{sit - spkmy | Zaidi +ej =n}

This is a finite set. [ |

Corollary 22.2. Let R be a ring and I an ideal. If R is noetherian, then Br(R) and gr;(R) are also noe-
therian. And if Br(R) is noetherian, then R is noetherian.

Proof. If R is noetherian, then I is a finitely generated ideal generated by ry,--- ,7,. We have
Br(R)o = R, and Br(R)+ is generated rq,--- ,rj as an ideal in By(R). Then B;(R) is a finitely
generated R-algebra, so we are done by the lemma above.

If B;(R) is noetherian, then R = B;(R)/B(R)+ is noetherian. [

Definition 22.3. Let M be an R-module. A decreasing filtration {M,} in M is a sequence of
submodules My = M 2 M; O ---. We call M is a filtered R-module. (Note that we are not
in the graded setting now, so M,, are indeed submodules.) The associated graded module is
ng = @nzoMn/MnJrl-

As an example, if R is a ring and [ is an ideal, then there is a filtration R O I 2 I? D ---. Then
grR = gr;(R). Similarly for M D IM D I?°M D ---.

As an aside, if A is an abelian group with a filtration A = Ay 2 A;---, then we can define a
topology on A by defining {A;} to be a base of open neighborhoods of 1. Under this topology,
addition is continuous, so A is made into a topological group. This topology is Hausdorff if and
only if Np,>0A, = {0}. In the situation with R and {I"}, this is called the I-adic topology on R.

Definition 22.4. We say that two filtrations {M,,} and { M/ } on M have bounded difference if and
only if there exists N1, N2 such that My, 1, C M), and Mz’v2+n C M,,. One can take N; = Nj by
taking the maximum of the two. This means that they define the same topology.

Definition 22.5. Let R be a ring, I an ideal, and M an R-module. {M,,} is an I-filtration if for any
n >0, IM, C My41, whichis equivalent to that I*M,, C M, for anyn > 0,k > 1. An [-filtration
is stable if I M,, = M4, for all sufficiently large n.

For example, M,, = I" M is a stable [-filtration.
Lemma 22.6. If {M,,} is a stable I-filtration, then { M, } and {I" M } have bounded difference.

Proof. By definition, I"M = I"My C M,. On the other hand, since {M,,} is stable, we know
that there exist some N such that for n > N, we have I"My = My.y,. But "My C I"M, so
I"M C Myyn. [ |

Theorem 22.7 (Artin-Rees Lemma). Suppose R is noetherian, I is an ideal, and M is a finitely generated
R-module. Let M, be a stable I-filtration on M. Then for any submodule M’ of M, the induced filtration
{M' N M,} is a stable I-filtration on M'.

Corollary 22.8. With R, I, M, M’ as above, we have (I"M) N M' = I"~N(IN M n M").



58 NOTES BY WENQI LI

This means that the subspace topology on M’ is the I-adic topology on M’.

Proof of Artin-Rees Lemma. Define
M* = @nZOMn'

If M,, is an I-filtration, then M* is graded B;(R)-module because I*M,, C M, . The key lemma
is the following:

Lemma 22.9. If R is noetherian, I an ideal in R, and M a finitely generated R-module. Let {M,,} be an
I-filtration on M. Then {M,,} is a stable I-filtration if and only if M* is a finitely generated Br(R)-module.

Proof. Since R is noetherian, we know that B;(R) is noetherian. Consider the submodule
M=My® M - &M, ®IM,®I*M, ® -
of M* (because each I*M,, is contained in M,, ). More efficiently,
M;=PpMme G 1" "M,
k#n k>n+1

Note that M are increasing, and U, M,y = M*. Hence, M}, = M* for some N if and only if
M, = I*N)My forall k > N. Reindexing, this is My; = I I My for all j. This is the definition of
being a stable I-filtration, so we indeed have M3, = M* for some N. On the other hand, M, is a
finitely generated B;(R)-module since it is generated by M & - - - & M, each of which is a finitely
generated module over R. Hence M* is a finitely generated B;(R)-module if and only if {M,, } is a
stable I-filtration. [ |

Returning to the proof of Artin-Rees, we now know that M * is a finitely generated B;(R)-module.
Consider the induced filtration { M’ N M,,} on M'. We have

IM'NnM,) cIM NIM, C M N M,

so {M' N M,} is an I-filtration on M’. Thus we can construction (M’)* C M*, which is a B;(R)-
submodule. We know that B (R) is noetherian and M* is finitely generated, so M* is noetherian,
and any submodule is finitely generated. Hence (M’)* is finitely generated over B;(R) and thus
{M' N M,} is a stable I-filtration.

Corollary 22.10 (Krull). Let R be noetherian, I an ideal, and M a finitely generated R-module. Then

ﬂ I"M = {m € M | thereexistsr € I,(1+4r)m = 0}.

n=1
In particular, this intersection is zero if I is contained in the Jacobson radical of R, or R is a domain, I is a
proper ideal, and M is torsion free.

Proof. Let M’ = N2, 1" M. Artin-Rees Lemma implies that
(INTIMYN M = T1(INM 0 M)
but I* M’ O M’ just because it is the intersection over all power. So we get

M' =IM'
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By Nakayama’s lemma, this means there exists r € I such that (1 + )M’ = 0. Hence
M' C{m e M | thereexistsr € I, (1 +r)m = 0}.

For the other inclusion, we have
m=-rm=r"m=---
som € I"M for all n. [ ]

For example, M = R = C*°(R)( be the germs of smooth function at 0 € R. Let m be the maximal
ideal of germs vanishing at 0. The ring R is local, so the condition of Krull’s theorem is satisfied
except for noetherianness.

ﬁ m"M
n=1

is the C'*° functions whose Taylor series at 0 is identically 0. We know that this is not zero, so the
Krull’s theorem fails for non-noetherian rings.

23. LECTURE 23: 2023.11.30

We will discuss Hilbert functions.

Let k be a field. Let S = k[zo, - - - , z4), a graded ring. The dimension of the n-th piece is
d 1
”; ) — —(n4d)(n+ 1)

dimy, S, :< 7

This is a polynomial in n of degree d with leading coefficient ;.

If M is a finitely generated graded S-module, so M = ©,,>0M,, we obtain a function
Hyr(n) = dimy M,.

When M = S/I where I isa homogenousideal (so I corresponds to some subset X of the projective
space), we write Hx (n).

In general, let S = ®,>05, be a graded noetherian ring. Let x be a function on the set of isomor-
phism class of finitely generated Sy-modules, to Z. For example, if Sy is a field, we can take x to
be the dimension of M. If Sy is artinian, then we can take x to be the length of M. Note that if £
is algebraically closed and S is a finitely generated k-algebra, then Sy is artinian, and in this case
the length is equal to the dimension.

We assume Y is additive over exact sequences: given an exact sequence
0—>M —-M-—M -0
of finitely generated Sy modules, then x (M) = x(M') 4+ x(M"). Here are some consequences:

(1) If we have an exact sequence
0—-My—M —---—=M,—0

of finitely generated Sy modules, we get
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(2) Given a filtration My = M D --- DO M, where each M;/M; is a finitely generated module
over Sy, then

n—1

xX(M/M,) = Z X(M;/Miyq).
=0

If M is a finitely generated S-module, then each M, is a finitely generated Sp-module, and we can
define

HX,M(n) = X(My).
This is called the Hilbert function.

There is another version. Let R be a noetherian ring (no grading), and let M be a R-module with
a filtration {M,, } (not graded pieces). We might be able to define

Py v (n) = x(M/Mp).
The point is that given M, we associated grM = &M, /M1, then
Pyy(n+1) = Pyy(n) = Hy g (n)

once everything is defined.

Let R be a noetherian ring, m a maximal ideal, and % the residue field.
Definition 23.1. An ideal qis m-primary if \/q = m.

In a noetherian ring, this is equivalent to that there exists some & such that mk C q € m, because
in a noetherian ring any ideal contains some power of its radical.

Let M be a finitely generated R-module and q a m-primary ideal. Let S = gr,R = @,>0q"/q"t".

Then Sy = R/q is artinian because ¢ contains some mk. If M is a finitely generated, we have
gryM = ®,>09"M/q""1 M. This is a finitely generated S-module.

Let x be the length function as Sp-modules. If M,, = {q"" M} or any stable g-filtration, then M,, /M,, 11
is a finitely generated Sy-module, so it has finite length. This implies that M /M, also has finite
length. We define

Hovr = Hym

and P, y/ similarly. This depends on the filtration. Concretely, H, 1/(n) is the length of q" M /q" 1 M.

We need some knowledge on numerical polynomials. Consider functions f : Z>o — Z. We say
fi ~ faif fi(n) = fa(n) for sufficiently large n. This is an equivalence relation. We identify
functions under this equivalence relation.

For example, a polynomial in Z[t] defines such a function. Sometimes a polynomial p in Q[t] defines
a function Z>o — Z. If so, we call p a numerical polynomial. If f ~ p, then we also say f is
a numerical polynomial. Note that if p, p> are polynomials and p; ~ po, then p; = ps because
their difference has infinitely many zeros. A numerical polynomial has a well-defined degree and
leading coefficient. We adapt the convention that deg 0 = —1.

If f is a function Z>o — Z, we define Af(n) = f(n + 1) — f(n). Then f1 ~ f; implies Af; ~ Afs.
For example, AP, ry = Hy g1
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Lemma 23.2. f is a numerical polynomial of degree d if and only if A f is a numerical polynomial of degree
d — 1. A Z-basis for numerical polynomials in Q|t] is given by

t 1 )

<z> = Et(t—l)m(t—H—l).

In other words, any numerical polynomial in Q|t] is uniquely of the form
()

2 ail

- 7

1=0

where a; € 7.

Proposition 23.3. Let R be a graded noetherian ring. Assume that R is generated by elements in degree 1
over Ry, i.e. R = Ry[r1,--- 7] with degr; = 1. Let M be a finitely generated graded R-module, and x
an additive function. Then H, yr is a numerical polynomial of degree k — 1.

Proof. We use induction on k. When k = 0, there is no generator, so R = Ry. This means M
is a finitely generated Ro-module. This means that M,, = {0} for all sufficiently large n. Hence
H, nr ~ 0, whence deg H, p; = —1.

For the inductive step, assume the statement is true for R’ generated by at most & — 1 elements.
Consider R’ = R/r;R. We have an exact sequence

0K —->M>2M-=L-—=0

where K, L are the kernel and cokernel of multiplication by rj. They are graded R’-modules. We
have exact sequences

0— Ky, — My = Myi1 — Lnt1 — 0
We know that
AHyn(n) = x(Mpy1) = X(Mn) = X(Lnt1) = X(Kn) = Hy(n+ 1) — Hy x(n)
By the induction hypothesis, this has degree at most & — 2, so H, »r has degree atmost k. — 1. W

Corollary 23.4. Let R be noetherian, m a maximal ideal, q a m-primary ideal, and M a finitely generated

R-module.

(1) If q is a generated by at most k elements, then Hq nr is a numerical polynomial of degree at most
k—1.

(2) If Py () is the length of M/q" 1 M, then Py ys is a numerical polynomial of degree at most k.
(3) If {M,} is a stable q-filtration, and we define P(n) to be the length of M /M1, then P is a nu-

merical polynomial of degree at most k.

Proof. The graded ring gr, R is generated in degree 1 as a ?/q-algebra by images of generators of
q. |

Lemma 23.5. Same hypothesis as in the previous corollary. If 0 — M’ — M — M" — 0 is an exact
sequence of R-modules, then Hy py — Hq pv = F where F is a numerical polynomial and I and Hg yp have
the same degree and leading coefficient.
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Proof. We have an exact sequence
0—=q"MNM —q"M — q"M" — 0.
This gives
0= q"MNM /"' MAM — q"M/q"T' M — q"M" /q" ' M" — 0.
Let
F(n)=Lq" MM /q"T M n M)
Then Hy yy — Hq pv = F. Observe that F' = AP, where
P(n) = 4(M'/M' 0 g™ M)
Also as usual, Hy p;r = AP, pp where Py ppr(n) = (M’ /q" 1 M),

By Artin-Rees, the filtrations {q"M N M’} and {q" M’} have bounded difference. So there exists
some constants N such that

P(n—=N) < Pyur(n) < P(n+N).

This is only possible if P and F; »; have the same degree and leading coefficient. Thus so do AP
and AP, s, which is the desired result. [ |

We will proceed to the dimension theorem. Let R be a local noetherian ring, m its maximal ideal,
and k the residue field. There are three possible notions of dimension. The first one is the Krull
dimension dim R. The second one is d(R) = deg Hy r + 1. The third one is 6(R), the minimal
possible number of generators of an m-primary ideal q. (Here, if (0) is m-primary, we set §(R) = 0.)
The dimension theorem says that these are all the same.

In the dimension 0 case, R is artinian and m is nilpotent, so (0) is m-primary. Also, deg Hy r = —1
if and only if it is the zero polynomials, which means m”/m"*! = 0 for all large n. This happens
if and only if m"™ = 0 for all large n, which is equivalent to R being artinian. Hence we see that in
dimension 0 indeed these are all the same.

We will prove the dimension theorem next time. Now we make some side remarks. Let k be
algebraically closed, and let R = k[xo, - -- , kn]|/I where I is some homogeneous prime ideal. So
R is the projective coordinate ring of some projective variety X. We have the Hilbert polynomial
Hx(n) = dimy, R, which is anumerical polynomial. A factis that if r is the dimension of X (which
we haven'’t defined for the moment), then deg Hx is 7, and its leading coefficient is d/r! for some
positive integer d. This integer d is called the degree of X. We saw that the degree of P} is 1.

An easy exercise is that if X = V(f) where f is homogenous irreducible of degree d, then the
degree of X is d. More generally (and harder), if X C P& with dimension r, then cutting X with
r hyperplanes will generally give a finite set of d points where d is the degree of X.

24. LECTURE 24: 2023.12.5

Recall that we want to prove the dimension theorem for a local noetherian ring R. Let m be its
maximal ideal and k£ = R/m its residue field.

An immediate corollary of the dimension theorem is that the dimension of a local noetherian ring
is finite, as can be seen using the quantity J(R), the minimal number of generators of a m-primary
ideal.

The easiest step is to show
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Lemma 24.1. d(R) < §(R).

Proof. Recall that d(R) = deg Hyn g + 1. Let q be a m-primary ideal generated by ¢ elements where
t = 6(R). We want to prove that deg Hn g+1 < t. By Corollary 23.4, we know that deg Hy p < t—1.
So it is enough to observe that Hy, r and H, r have the same degree. Since q is m-primary, we know
that there exists some k such that m* C q C m, and therefore

We then have surjections
R/m* — R/q" — R/m"
This means ¢(R/tn) > ¢(R/q™) > {(R/m™). By definition, this gives
Pm,R(kn) > Pq,R(n) > Pm,R(n)

For large values of n these are all polynomials, so such an inequality is only possible if they have
the same degree. Applying the difference operators gives the result. |

Let R=R / /0, and its maximal ideal is denoted by m. This is a reduced ring.

Lemma 24.2. With R as above, we have
(1) dim R = dim R
(2) 6(R) =4(R)
(3) d(R) < d(R)

Proof.

(1) Prime ideals in R corresponds to prime ideals in R that contains +/0, but all prime ideals
contain /0. Hence there is a bijection between chains of prime ideals.

(2) If q is m-primary in R generated by ¢ elements, then the image q in R is also m-primary
and generated by ¢ elements. Thus 6(R) > §(R). Conversely, if g in R is m-primary and
generated by ¢t elements 77, - - - , 77, we can lift the generators to 71, - - - , 7. There is certainly

a surjection
V(r,m) = y/g=m
On the other hand, v0 C m, so the kernel of the above map is exactly V0,
meaning that \/(r1,- -+ ,7) = m. Hence 6(R) = §(R).
(3) The surjection m — m gives surjections
m"/m" ! m"/m !

Hence Hy r(n) > Hwm r(n), so we have the degree inequality.

This allows us to reduce to the case where R is reduced. Here are some facts we will use

(1) If Risanyring, I isanideal, and py, - - - , pj, are prime ideal, then I is contained in the union
p1 U Upy if and only if ] is contained in one of them.
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(2) If R is a reduced noetherian ring, and py,--- ,py are the minimal primes of R (so their
intersection is 0), then the set of zero divisors of R is the union p; U --- U p. If R is not
assumed to be reduced, then the minimal primes are contained in the set of zero divisors.
(More generally the zero divisors are union of associated prime, but we won't use that.)

Lemma 24.3. Let q be a m-primary ideal in a local noetherian ring R. If M is an R-module, and r € R is
not a zero divisor on M (i.e. multiplication by r is an injection), then

dequ,M/rM < dequ,M —1.
In particular, if r is not a zero divisor, then d(R/rR) < d(R) — 1.

Proof. We have a short exact sequence

0—M5S M— M/rM—0

By Lemma 23.5, we know that Hy rs — Hg ar/ryy = F where F has the same degree and leading
coefficient as Hy 3s. In other words, Hy ar.-0r has smaller degree than Hy /. |

We know prove dim R < d(R) for reduced R. We have seen that if any of the three dimensions is 0,
then all of them are 0. So we induct on the value of d = d(R) and the base case is known. Assume
that dim R’ < d(R’) = d' is true for all rings R’ with d’ < d. Let

Po C - Chg

be a maximal (strictly increasing) chain of prime ideals in R. We can assume k > 1, since we know
the case where k£ = 0. Then p; is not a minimal prime. So there exists r € p; not a zero divisor
(otherwise p; is contained in the union of minimal primes (here we used R reduced!), and thus in
one of the minimal primes, a contradiction.) Consider R’ = R/rR, and let p/ be the image of p; in
R'. We get a chain

Py C - Cpg
So dim R’ > k — 1. On the other hand, Lemma 24.3 implies that d(R') < d(R) — 1. By the inductive
hypothesis, we know that dim R’ < d(R’), so

k—1<dimR <d(R')<d(R)-1
Thus k < d(R), giving dim R < d(R). Note that this already implies dim R < oo.

It remains to prove §(R) < dim R. The finiteness of dim R allows us to use induction of dim R = d.
The base case is again known. Assume the results for all &’ < d.

Lemma 24.4. If R is local noetherian, and r € R is not a zero divisor or a unit, then
(1) 0(R) <o(R/rR)+1
(2) dim R > dim(R/rR) + 1

Note that this lemma implies the inductive step. If dim R > 0, then the maximal ideal m is not
minimal. By the same reasoning as before, there exists some r € m that is not a zero divisor, and
clearly also not a unit. Then the lemma gives

dim(R/rR) <dmR—-1=d—-1

The induction hypothesis says 6(R/rR) < dim(R/rR), and the lemma gives 6(R) — 1 < §(R/rR).
Putting them all together yields 6(R) < d.
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Proof of Lemma 24.4.
(1) Suppose s1,- -, s; generate an m’-primary ideal in R* = R/rR, where m’ is the image of
m. Lift s; to r; € R and consider (r,71,---,7;). We claim that this is m-primary. This is

because we have equality
R/(Tv Ty, )Tt) — (R/T‘R)(Sl, o aSt)

and the right side is artinian, so (r,ry,--- ,7;) contains some power of m, and hence is m-
primary. Therefore §(R) < 6(R/rR) + 1.

(2) Start with a chain

PLC e TPy
in R = R/rR. We can lift it to a chain
p1 C - Chi

that is also strictly increasing. We know that € p; and r is not a zero divisor, so p; cannot
be minimal. Thus there is some p that is strictly contained in p;, so dim R > dim R’ + 1.

[ |
This finishes the proof of the dimension theorem.
Applications of the dimension theorem.
Corollary 24.5. Let R be a local noetherian ring, r € R not a zero divisor or a unit. Then dim(R/rR) =
dimR -1
Proof. By Lemma 24.4 and the dimension theorem, we have

dim(R/rR) <dimR —1=4§(R) — 1 <)(R/rR) = dim(R/rR)

So all inequalities are equalities. u
Proposition 24.6. Let R be a noetherian ring but not necessarily local. Let ry,--- ,r, € R. Let p bea
minimal prime in the set of ideals that contains (ry,--- ,7x) (S0 p corresponds to a minimal prime in the

quotient R/(r1,--- ,7k)). Then htp < k.

Proof. Recall that ht p is the length of the longest chain that ends at p, which is dim R,. The mini-
mality of p means that if we write

V() =p1iN--Npg

with no containment relations (a decomposition into irreducible components), then p is one of
them, say p;. An easy fact is that vVS—1I = S—1V/1, so here we have

(ri,-+r) Ry = (R—p) ' (p1N---Npa) = [ | piRy = PRy

i=1
Thus (71, - -+ ,7%)Rp is pRp-primary in the local ring R,. The dimension theorem then implies

k> 6(R,) = dim Ry.
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Corollary 24.7 (Krull’s principal ideal theorem = Hauptidealsatz). Let R be a noetherian ring. Let
r € R that is not a unit or a zero divisor. Let p be a minimal prime ideal in the set of ideals containing (r).
Then htp = 1.

Proof. The Propositionimplies htp < 1. If p has height 0, then p is a minimal prime, so p is contained
in the set of zero divisors. But r € p is not a zero divisor, so p cannot have height 0. Thus p has
height 1. |

There are some other applications that we will not prove in class:
Theorem 24.8. Let R be noetherian. Then dim R[x] = dim R + 1.

This sounds obvious but in fact fails when R is not noetherian. As a corollary, if k is a field then
the dimension of k[zy, - ,z,] is n.

Theorem 24.9. If R is a noetherian domain, then the following are equivalent:
(1) Risa UFD
(2) every height 1 prime ideal is principal
(3) if mis maximal (equivalently, prime) then Ry, is a UFD and Pic R = 0
25. LECTURE 25: 2023.12.7

Theorem 25.1. Let k bea field, which is algebraically closed. Then dim k[z1, - - - , Zy|m = n for any maximal
ideal m.

Proof. Assume m = (x1,---,2,). Then grok[zy, -, oy]m is x>emF/m**+1. The piece m¥ /mk+1
is the homogenous degree k polynomials, which has dimension (”’Lllj_l). This is a polynomial of

degree n — 1in k. So deg Hy, k[z; ... wn]m = 7 — 1, and it follows that the dimension is n.

Any other maximal ideal is (x1 — a1, - -,z — ap), which is the same. [
Corollary 25.2. dim k[zq,--- ,x,] = n.

Proof. For any ring, dim R is max{dim R} because the longest chain must end at a maximal ideal.
|

Corollary 25.3. Let A = A(X) for X an affine variety over k = k. Then dim A is equal to the transcendence
degree of A over k. More precisely, there is an integral extension of k[xy,- -+ ,z4) — A(X), sodim A = d.

From now on, R is a local noetherian ring with maximal ideal m and residue field k.
Lemma 25.4. dim R < dimy m/m?. This quantity is referred to as the embedding dimension of R.
Proof. Letey,--- e, be a k-basis of m/m?2. Lift them tory,--- ,7,. Thenry,--- , 7, generate m mod

m?, so Nakayama’s lemma implies m = (r1,- -+ ,r,). m is itself m-primary, so 6(R) < n. The proof
is then finished by the dimension theorem. |
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Definition 25.5. We say R is a regular local ring if dim R = dimj m/m?. If R is noetherian but not
necessarily local, we say R is regular if Ry, is regular for all maximal ideals m.

It is a non-trivial fact that Ry, is regular for all maximal ideals m if and only if R, is regular for all
prime ideals p..

As an example, the polynomial ring k[z1,- - , x,] is regular. If R is a local noetherian domain of
dimension 1, then R is regular if and only if R is a DVR.If R is a noetherian domain of dimension 1,
then R is regular if and only if R is a Dedekind domain. We then see that in dimension 1, regularity
is equivalent to being integrally closed. In higher dimensions, regularity implies integrally closed.

Proposition 25.6. Let R be a local noetherian ring. Then R is regular of dimension n if and only if gr,, R =
k[zy,--- x| as graded algebras.

Proof. Assume gr, R = k[xy,- -+ ,x,] as graded algebras. Then the graded piece of degree 1 is m/m?
but also just the linear polynomials, so it is of dimension 7.

Assume R is regular of dimension n. We have a homomorphism k[z1,- - -, x,] — gr,, R defined by
sending ; to e; where ¢; is a basis of m/m?. The piece m* /m**! is generated by monomials in e;’s,
so this map is a surjection.

Let f be in the kernel of this map. Then we would have a surjection k[z1, -+ ,2,]/(f) = grnR,
so the dimension of k[z1,--- ,x,]/(f) is at least n. But if f is not 0, then it is not a zero divisor, so
dimk[z1, -+ ,z,]/(f) < n —1,acontradiction. Hence f = 0 and we have an isomorphism. [

In higher dimensions, we have the so called Jacobian criterion.

Proposition 25.7. Suppose R is a reqular local ring of dimension n. Let fi,---,fr € m. Let S =
R/(f1,-+ , fx). Suppose dimS = d. Then S is reqular if and only if the images of the f's in m/m?
span a subspace of dimension n — d. These images are typically denoted by dfy,- - - , dfy.

For example, if £ = 1 and f = f; # 0, then dim S = n — 1. S'is regular if and only if f is not zero
inm/m?,ie. f ¢ m? Inthecase R = k[z1, - ,%p)m, f € m? if and only if %(O) =0 for all i.

Proposition 25.8. A reqular local ring R is a domain.

Proof. We know that gr R = k[z1,--- , 2] is a domain. Given f € R not equal to 0, then there
exists a unique a such that f € m* — m?*! (because "m” = 0). Then we define in(f) € m*/m?*! to
be the image of f in m®/m®*!. We see that in(fg) = in(f) in(g) is non-zero for f, g non-zero, so fg
is non-zero. [

In fact, regular local rings are UFDs, but this is a hard theorem of Serre.

Finally we will talk about completions. Let A be an abelian group and A = 49 D A; D --- be a
sequence of subgroups. This defines a topology on A, where a sequence {xj } converges to some b
if and only if for any n, there exists IV such that £ > N implies x;, — b € A,,. This is Hausdorff if
and only if Ng>¢ A = {0}. Cauchy sequences are defined similarly.
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The completion A is a complete and Hausdorff space produced out of A. The construction is stan-
dard, namely the set of all Cauchy sequences in A modulo the equivalence relation {z,} ~ {y,}

if {x, — yn} converges to 0. There is a group homomorphism A — A sending a to the constant
sequence with dense image, and the kernel is Nj>0Aj.

Algebraically, for each k£ we have surjections A/Aj 1 — A/Aj. so we can take the inverse limit
Jm A/Ay

Concretely this is the set of tuples (ag, a1, - - - ) such that the image of aj41 in A/Ay is ai. Thereis a
natural map A — lim A /A, with kernel Ny>0Ay. This identifies the completion with lim A JAg.

Say 0 - A" - A — A” — 0is an exact sequence of abelian groups. Start with a decreasing
sequence of subgroups A; C A. This induces a sequence A} in A”, and A} = A, N A" in A’. With
these filtration we have an exact sequence

0 A A A" 0.

1\~Io’£_e\ that for a fixed k, we have 0 — A, — A, and the filtration induces a filtration on Aj. Then
AJA, = A/ Ay.

The basic example in ring theory is the filtration {I"} in R where I is an ideal. If M is an R-module
then we can take {I"M}. It is a basic fact that R is a ring, and M is a R-module.

Example 25.1. Let R = Z and I = (p). Then R is usually denoted by Z,, the p-adic integers. Let
R =k[z1, - ,zp]and I = m = (z1,--- ,zy,), then R = k[z1,- - , x,] the formal power series.

Some properties:

(1) If Ris noetherian, then R is noetherian. The main point is that gr;ﬁ & or; R, which is then
seen to be noetherian.

(2) If Ris noetherian, M is finitely generated, then
0—-M —-M—M"—0
is exact implies
0— M —M—M' -0

is exact. The proof is to use Artin-Rees lemma to identify filtrations and apply the abelian
group fact.

(3) If R is noetherian, M is finitgly generated, then M=Me® » R. This is obvious when
M = R" since both sides are R". In general, we pick
0—-K—R"—->M—0
where K is finitely generated by noetherianness. Then
K®rR—>R" 5> M®rR—0
is exact, and on the other hand

0K R"M=0
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is exact. There are natural vertical maps, and by diagram chase we get that M ®@r R—M
is surjective for all finitely generated R-module, in particular this is true for K. Chasing
diagrams again gives the desired isomorphism.

(4) For Rnoetherian, R is R-flat, because flatness can be checked only against finitely generated
modules.

(5) Let m be a maximal ideal and let R be the completion in the m-adic topology. Then Risa
local ring, because for r € m,

1
1+7r
which converges in R.Thus1+risa unit, which implies all things not in m are units.

=1—r+4r?—...

(6) Assume R is local. Then dim R = dim R. R is regular if and only if Ris regular. If there

exists a field £ in R mapping isomorphically to R/m, then Ris regular if and only if Ris
the power series k[z1,- - ,z,].

The Cohen structure theorem says that if R is local noetherian with maximal ideal m and
residue field k, and R is complete with respect to the m-adic topology, and most importantly
if R contains a subring which is a field, then R contains a subring isomorphic to k£ via
R — R/m = k. This is called a coefficient field. Then R = k[z1,- - ,x,]/I.

What does this mean? Let M be a smooth or complex manifold. Then locally they all look like R"
or C". In algebraic geometry, if X is an affine variety, it has local rings A(X ), but they don’t look

alike. If A(X)y, is regular, then gr,, A(X)n and completions A(X )y do look alike.
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