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1. Lecture 1: 2023.9.5

Basic conventions: all rings have 1, 1 could be 0 but only whenR = {0}. Ring homomorpisms send
1 to 1.

If there is a ring morphism f : R → S, call S an R-algebra. The data of a R-algebra includes the
structural morphism f . Examples includes the inclusion Z ↪→ Q, or the quotient ring R→ R/I . A
basic example is the polynomial algebra R[x1, · · · , xn] over a ring R, and the formal power series
R[[x1, · · · , xn]]. A short hand notation is xI where I = (a1, · · · , an) is a tuple in Zn+, and xI means
xa11 · · ·xann . The notation |I|means

∑
i ai. So another way of writing elements in R[x1, · · · , xn] is∑

d

Pd, where Pd =
∑
|I|=d

rIx
I

grouping together homogenous of degree d parts.

Definition 1.1. Let S1, S2 be R algebras. A ring morphism f : S1 → S2 is an R-algebra morphism
if f commutes with the structural homomorphisms.

For example, if J is an ideal in S and S is an R-algebra, then S/J is also an R-algebra.

Suppose S is an R-algebra. Let s1, · · · , sn ∈ S. Then we have an R-algebra homomorphism
R[x1, · · · , xn]→ S

by evaluating at s1, · · · , sn.

Basic fact: every R-algebra homomorphism from e : R[x1, · · · , xn]→ S is of this form. (Take si to
be e(xi).) So there is a bijection Hom(R[x1, · · · , xn], S) ∼= Sn as sets.

This doesn’t work for R[[x1, · · · , xn]] since one can’t evaluate a power series unless there is some
notion of convergence.

Definition 1.2. If an R-algebra S is isomorphism as R-algebras to R[x1, · · · , xn]/I , then say S is a
finitely generated R-algebra. If I is a finitely generated ideal, then say S is finitely presented.

The second basic object is R-modules.

Definition 1.3. M is an R-module if (M,+) is an abelian group, and · : R ×M → M is a ring
action.

Definition 1.4. N ⊂ M is an submodule if it is a subgroup and closed under action of R. The
quotientM/N inherits the structure of a R-module.

Definition 1.5. A function f :M1 →M2 is an R-module homomorphism if it is a homomorphism
of abelian groups, and f(rm) = rf(m) for all r ∈ R andm ∈M1.

Given a homomorphism f , the kernel, the image, and the cokernel are all naturally R-modules. f
is injective if the kernel is 0, and f is surjective if the cokernel is 0. f is a isomorphism if and only
if f is bijective, which implies f−1 is also a homomorphism, hence also an isomorphism.

Example 1.1.
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(1) If k is a field, then a k-module is a k-vector space.

(2) An R-algebra is naturally an R-module.

(3) A Z-module is the same thing as an abelian group.

(4) An R-submodule of R is an ideal.

(5) Free modules Rn

(6) Let X be any set andM an R-module. The set of all functions

MX = {f : X →M}

is an R-module under pointwise addition and multiplication.

(7) Direct sums/products. LetM1,M2 be R-modules. The direct sum is

M1 ⊕M2 = {(m1,m2) | mi ∈Mi}

More generally, let A be a set (might be infinite), and suppose Mα is a R-module for all
α ∈ A. Define the direct product ∏

α∈A
Mα

to be the set of functions f : A →
∐
α∈AMα such that f(α) ∈ Mα. The addition and

multiplication by r is pointwise. The direct sum is a submodule⊕
α∈A

Mα ⊆
∏
α∈A

Mα

consists of functions f such that f(α) = 0 for all but finitely many α’s.

Another basic object is ideals. Let R be a fixed ring. Let A be a set and Iα be an ideal of R for all
α ∈ R. The intersection ⋂

α∈A
Iα

is an ideal, and it is the largest ideal contained in all the Iα’s.

Let I, J be ideals in R. The ideal product is

IJ =

{
N∑
i=1

risi | ri ∈ I, si ∈ J

}
It is obvious that IJ ⊆ I∩J and in general they are different. For examples, inZwe have (n)∩(n) =
(n), but (n)(n) = (n2). It is easy to check that (IJ)K = I(JK) and IJ = JI . There is no way to
take an infinite product of ideals.

The ideal sum is
I + J = {r + s | r ∈ I, s ∈ J}

We see that I, J ⊂ I + J , and it is the smallest ideal containing I and J . The union I ∪ J is almost
never an ideal, and it is only when one ideal is contained in the other.
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It is possible to sum up infinitely many ideals. Suppose we have ideals Iα, α ∈ A. The sum is
defined to be ∑

α

Iα =

{∑
α

rα | rα ∈ Iα, rα = 0 for all but finitely many α
}
.

Definition 1.6. Given r ∈ R, the set of all multiples of r, denoted by (r), is the principal ideal
generated by r. Given r1, · · · , rk ∈ R, define the ideal generated by r1, · · · , rk to be

(r1, · · · , rk) =

{
k∑
i=1

tiri | ti ∈ R

}
= (r1) + · · ·+ (rk)

Infinitely generated ideal is defined to be the set of all finite sums, or the infinite sum of principal
ideals.

These constructions have analogues forR-modules. Fix anR-moduleM . Suppose there is a collec-
tionMα of submodules. Onemay define the intersection and the sum, but in general one can’t take
the product. However, if I is an ideal in R, and N a submodule inM , one can form the product

IN =

{
n∑
i=1

rimi | ri ∈ I,m ∈M

}
.

Let R be a ring. A unit in R is an element with an multiplicative inverse. R× is the set of all units,
and it is a group under multiplication. A zero divisor in R is an r ∈ R such that rs = 0 for some
s 6= 0.

Definition 1.7. R is a domain if R 6= {0} and the only zero divisor is 0.

Example 1.2.

(1) A field is a domain.

(2) A subring of a domain is a domain.

(3) If R is a domain, then R[x] is also a domain.

Definition 1.8. An ideal P ⊂ R is a prime ideal if P 6= R, and rs ∈ P implies r ∈ P or s ∈ P for all
r, s ∈ R.

Fact: P is a prime ideal if and only if R/P is a domain.

Observation: Suppose f : R → S is a ring homomorphism, and Q ⊂ S is a prime ideal. Then
f−1(Q) is a prime ideal in R.

Proof. Let f be the composition R → S → S/Q. The kernel of f is {r ∈ R | f(r) ∈ Q} = f−1(Q).
The induced homomorphism R/f−1(Q) → S/Q is injective, so R/f−1(Q) is isomorphic to some
subring of S/Q, a domain. Hence R/f−1(Q) is a domain, so f−1(Q) is a prime ideal. �
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2. Lecture 2: 2023.9.7

Definition 2.1. A maximal idealM in a ring R is an ideal not equal to R, and if J is an ideal in R
andM ⊆ J ⊆ R, then J =M or J = R.

M is maximal if and only ifR/M is a field. IfR is a ring, I is an ideal, then there is a 1-1 correspon-
dence between ideals J containing I and ideals of R/I . Hence M is a maximal ideal in R if and
only if k = R/M is non-zero and has no proper non-trivial ideals, so it is a field.

Theorem 2.2. Let R be a ring and I a proper ideal. Then there exists a proper idealM containing I .

Proof. Zorn’s lemma. �

Corollary 2.3. If R 6= {0}, there exists a maximal ideal in R.

Proof. Apply the theorem to I = {0}. �

Corollary 2.4. If R 6= {0} and r ∈ R, then r is a unit if and only if r is not contained in any maximal
ideal.

Proof. If r is not a unit, we can apply the theorem to I = (r) to get a maximal ideal containing r. �

We move on to the topic of radical of ideals. If I is an ideal in R, we defined
I = {r ∈ R | there exists n such that rn ∈ I}

The radical of 0 is the set of nilpotent elements in R.

Lemma 2.5. The radical of an ideal is an ideal of R. Taking radical is an idempotent operation.

Proof. Let r, s ∈ rad(I). Then exists a n such that rn, sn ∈ I . We can expand

(r + s)N =
N∑
k=0

(
N

k

)
rksN−k

so for N ≥ 2n− 1, each term is in I . �

Theorem 2.6. If I 6= R, then the radical of I is the intersection of all prime ideals containing I .

Proof. If r ∈ rad(I), and P is a prime ideal containing I , then rn ∈ I ⊂ P , which implies r ∈ P .
Hence rad(I) ⊂ ∩P⊇IP .

Now we must show that if r /∈ rad(I), then there exists a prime ideal P containing I such that
r /∈ P . Under this assumption, we have that rn /∈ I for any n. Let X be the set of all ideals J such
that I ⊂ J and rn /∈ J for any n. Note that X is not empty since I is in X . Let M be a maximal
element in this set X . We claimM is prime. To see this, suppose a, b are elements not inM . Then
by the maximality ofM , the ideal generated by a andM contains rn and the ideal generated by b
andM contains rm. Therefore their product (ab,M) contains rn+m. This shows ab /∈M , soM is a
prime ideal. �
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Proposition 2.7. The Jacobson radical of a ring R is the set {r ∈ R | 1 + rs is a unit for any s ∈ R}.

Proof. Suppose 1+ rs is not a unit for some s. Then there is a maximal idealm containing 1+ rs. If
m also contains r, then m contains 1 + rs− rs = 1, which is impossible. So r /∈ m. This shows that
the Jacobson radical is contained in the proposed set.

Now assume 1 + rs is a unit for any s ∈ R. Suppose r is not in m for some maximal ideal m. We
know that the ideal generated by r and m is the entire ring, so there exists s ∈ R and t ∈ m such
that sr + t = 1. But then t = 1 − sr is a unit in m, a contradiction. Therefore r is in the Jacobson
radical. �

3. Lecture 3: 2023.9.12

Theorem 3.1. Let R be a Noetherian domain. Then the following are equivalent:

(1) R is a UFD

(2) if r ∈ R non-zero non-unit, then r is irreducible if and only if (r) is a prime ideal

Theorem 3.2. If R is a UFD, then R[x] is a UFD.

Proof. Let K be the field of fractions of R. We will show that the irreducible elements in R[x] are
either r ∈ R irreducible in r, or f ∈ R[x] primitive and f is irreducible inK[x].

Recall that f ∈ R[x] non-zero is called primitive if the gcd of its coefficients is equal to 1. In general,
if f 6= 0, define c(f), the content of f , to be the gcd of its coefficients. So for any f 6= 0, we can write
f = c(f)f0 where f0 is primitive.

Lemma 3.3. If f, g are primitive polynomials in R[x]. If f = αg with α ∈ K×, then α ∈ R×.

Proof. Let α = r/s, so then sf = rg. The content of sf is s, and the content of rg is r, which means
r is an associate of s, so α = r/s is a unit in R. �

Lemma 3.4. If f ∈ k[x] is non-zero, then there exists α ∈ K× such that αf ∈ R[x] and αf is primitive.

Proof. Let f =
∑d

i=0 aix
i where ai = ri/si. Let s be the product of all si. Then sf ∈ R[x]. Now

α = s/c(sf) does the job. �

Lemma 3.5 (Gauss lemma). If f, g ∈ R[x] are primitive, then fg is primitive.

Proof. Suppose not. Then there exists a r ∈ R irreducible such that r divides all coefficients of fg.
Now work in the ring R/(r). The ideal (r) is a prime ideal since R is a UFD, so R/(r) is a domain.
Now we have fg = 0 in R/(r), so f = 0 or g = 0. This means r divides f or g, contradicting the
hypothesis that both f and g are primitive. �

Proposition 3.6.

(1) If g ∈ R[x] is primitive, f ∈ R[x], then g|f in R[x] if and only if g|f inK[x].
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(2) if f ∈ R[x] primitive and f = gh inK[x], then there exists g0 = αg, h0 = βh, α, β ∈ K such that
g0, h0 are primitive and f = g0h0.

Proof. For (1), suppose f = gh with h ∈ K[x]. We may assume f is primitive. There exists some
α ∈ K× such that αh = h0 is primitive. Then αf = gh0 which is primitive by the Gauss lemma.
Now by Lemma, we get that α ∈ R×, so h = αh0 ∈ R[x].

For (2), just choose α, β as suggested and observe the polynomials are primitive. �

Corollary 3.7.

(1) If f ∈ R[x] is primitive and f is irreducible inK[x], then f is irreducible in R[x].

(2) if r ∈ R is irreducible, then r is irreducible in R[x].

This identifies a collection of irreducible elements in R[x].

Now we claim that any f ∈ R[x] not 0 or unit can be factored into a product r1 · · · rag1 · · · gb such
that ri is irreducible in R and gi are primitive and irreducible in K[x]. Indeed, write f = c(f)f0
with f0 primitive, then r1 · · · ra is just the factorization of c(f) in R. Then inK[x], we can factor f0
into a product of irreduicbles in K[x], but by part (2) of the Proposition, this gives a factorization
in gi’s primitive in R[x] and irreducible inK[x].

The uniqueness of such factorizations follows from the uniqueness of factorizations inR andK[x].
�

4. Lecture 4: 2023.9.14

We move on to affine algebraic geometry, which is the study of the polynomial ring k[x1, · · · , xn]
where k is an algebraically closed field. Define An

k to be the affine n-space over k, which is just kn
as a set (or vector space). We think of k[x1, · · · , xn] as the ring of functions onAn

k .

Given f1, · · · , fN ∈ k[x1, · · · , xn], define

V (f1, · · · , fN ) = {x ∈ An
k | f1(x) = · · · = fN (x) = 0}.

In generate, one can define V (A) for any subset A ⊂ k[x1, · · · , xn] to be the set of all points on
which every polynomial in A vanishes. It is easy to see that if I is the ideal generated by A, then
V (I) = V (A).

The Hilbert Basis Theorem says every ideal in k[x1, · · · , xn] is finitely generated, so there is no gain
in considering infinite subset A. We will prove this theorem.

Theorem 4.1. If R is Noetherian, then R[x] is also Noetherian.

This immediately implies R[x1, · · · , xn] is Noetherian if R is. And if S is a finitely generated R-
algebra forRNoetherian, then S is Noetherian and finitely presented. This is because S is realized
as R[x1, · · · , xn]/I , but now we know R[x1, · · · , xn] is Noetherian and thus I is finitely generated,
and as a quotient S is also Noetherian.
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proof of theorem. Let I be an ideal in R[x]. Define

Ik = {r ∈ R | ∃f =

k∑
i=0

rkx
k ∈ I, r = rk}

which is the set of all leading coefficients of polynomials of degree at most k (could be 0). It is clear
that Ik is an ideal. In particular, for any f ∈ I , xf ∈ I , so any r ∈ Ik is also in Ik+1. Hence Ik is an
increasing sequence of ideals, so R Noetherian implies Ik = IN for some N and all k ≥ N .

For all k ≤ N , choose g(k)1 , · · · , g(k)ak ∈ I polynomials of degree k such that their leading coefficients
generates Ik (Ik is finitely generated in R).

We claim that I is generated by g(k)i , 0 ≤ k ≤ N . It is clear that (g(k)i ) ⊆ I since all the g(k)i are in I .
Conversely, let f ∈ I . We proceed by induction on the degree d of f . If d = 0, then f ∈ I ∩R = I0,
so f is a linear combination of g(0)i ’s.

For the inductive step, if d ≤ N , then the leading coefficient of f is in Id, so there exists some si ∈ R
such that

f −
∑
i

sig
(d)
i

has degree less than d, because the g(d)i can produce the leading coefficient. Then f is a linear
combination of all g(k)i ’s by the inductive hypothesis.

If d > N , the leading coefficient of f is in IN , which is again produced by g(N)
i ’s. Consider

f −
∑
i

six
d−Ng

(N)
i

which is a polynomial of smaller degree to finish. �

Definition 4.2. A closed algebraic subset of An
k is a subset of the form V (I) for some ideal I in

k[x1, · · · , xn].

Lemma 4.3.

(1) I1 ⊂ I2 implies V (I2) ⊂ V (I1)

(2) V (0) = An
k and V (1) = ∅

(3) V (
∑

α Iα) = ∩αV (Iα)

(4) V (IJ) = V (I ∩ J) = V (I) ∪ V (J).

Proof. The proof is just set theory, except for the inclusion V (IJ) ⊂ V (I) ∩ V (J). To see this,
suppose x /∈ V (I) ∩ V (J), so there exist f1 ∈ I, f2 ∈ J such that f1(x) 6= 0 and f2(x) 6= 0. Then
f1f2 doesn’t vanish at x, and f1f2 ∈ IJ . This means V (IJ) ⊂ V (I) ∩ V (J). �

This lemma shows that the algebraic sets form the closed sets of a topology. This is the Zariski
topology.

Given any X ⊂ An
k , define I(X) to be the set of all polynomials that vanishes on all of X . This is

an ideal.
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Lemma 4.4.

(1) X1 ⊆ X2 implies I(X2) ⊆ I(X1)

(2) X ⊆ V (I(X))

(3) I ⊆ I(V (I)) for any ideal I in k[x1, · · · , xn]

(4) I(An
k) = (0).

Proof. Definitions. �

Lemma 4.5. V (I(X)) is the smallest closed subset of An
k containing X , i.e. the Zariski closure of X . In

particular, if X = V (I) is closed, then V (I(X)) = X .

Proof. Of course V (I(X)) is closed and X ⊆ V (I(X)). If X ⊂ V (J) = Y , then J ⊆ I(Y ) =
I(V (J)) ⊆ I(X). Then V (I(X)) ⊂ V (J) = Y . �

The question in the opposite direction is what is I(V (I)). Clearly rad(I) is contained in I(V (I))
since if f ∈ rad(I), then fN ∈ I , so fN (x) = 0 for every x ∈ V (I). Hence f(x) = 0 for every
x ∈ V (I), so f ∈ I(V (I)). The Nullstellensatz shows this inclusion is an equality.

A special case is the following: ifm is amaximal ideal of k[x1, · · · , xn], then there exists a1, · · · , an ∈
k such thatm = (x1−a1, · · · , xn−an). In other words,m is the kernel of the evaluation map at the
point (a1, · · · , an).

Conversely, assuming theNullstellensatz, wehaveV (m) 6= ∅, so there is somepoint a = (a1, · · · , an)
such that a ∈ V (m), so m ⊂ I({a}). By maximality they are equal.

We already know that k[x1, · · · , xn] is a UFD, and the non-zerominimal prime ideals are generated
by a single irreducible polynomial f . We call V (f) is an irreducible hypersurface. For any f , by
factoring it into irreducibles f = f1 · · · fN , we get V (f) = V (f1)∪· · ·∪V (fN ), so every hypersurface
is a union of irreducible hypersurfaces.

The operations V and I give a one-to-one correspondence between affine algebraic sets and radical
ideals of k[x1, · · · , xn].

LetX be a set inAn
k . What are the functions onX? They come from function onAn

k , but two such
function are the same onX if their difference vanishes onX . Thus we defined the affine coordinate
ring of X , A(X), to be k[x1, · · · , xn]/I(X). We see that A(X) is reduced.

Lemma 4.6. Maximal ideals of A(X) are in bijection with points of X .

Proof. Maximal ideals of A(X) are in bijection with maximal ideals of k[x1, · · · , xn] containing
I(X). Those are of the form n = (x1 − a1, · · · , xn − an), and I(X) ⊂ n mean (a1, · · · , an) is in
X . �
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5. Lecture 5: 2023.9.19

Definition 5.1. Let X be a topological space. X is irreducible if when X = X1 ∪ X2 a union of
closed subsets, then X = X1 or X = X2. Equivalently, every two non-empty open subsets have a
non-empty intersection.

Proposition 5.2. Let X = V (I) be a closed subset ofAn
k . X is irreducible if and only if I(X) is prime.

Proof. IfX is not irreducible thenwe canwriteX = X1∪X2 whereXi 6= X . So there exist functions
fi that vanishes onXi but not onX , i.e. fi /∈ I(X). But f1f2 vanishes onX , so I(X) is not a prime
ideal.

If I(X) is not a prime ideal, then there exists f1, f2 not in I(X) but f1f2 ∈ I(X). This implies that
X ⊂ V (f1f2) but X is not contained in V (fi). Now take Xi = X ∩ V (fi), which is a proper closed
subset of X . Thus X is not irreducible. �

By the correspondence, X is irreducible if and only if X = V (I(X)) = V (p) where p is a prime
ideal.

Example 5.1.

(1) An
k is irreducible sinceAn

k = V (0)

(2) A point is irreducible since it is the vanishing locus of a maximal ideal.

Definition 5.3. X is a (affine k−)variety if X is irreducible closed subset ofAn
k .

Equivalently, I(X) is a prime ideal, which is equivalent to A(X) being a domain.

Remarks about the Zariski topology:

(1) On A1
k, the Zariski topology is the finite complement topology, i.e. the closed sets are ∅,

finite sets, and A1
k. As topological spaces, this only depends on the cardinality of k.

(2) If n,m > 0, of course as setsAn+m
k = An

k ×Am
k . But the topologies are never the same, i.e.

Am+n
k always has more open sets thanAn

k ×Am
k with the product topology.

Let Df = An
k − V (f), i.e. the non-vanishing locus of a polynomial f . This is called a basic open

set. It is easy to see that Df ∩Dg = Dfg, and⋃
α∈A

Dfα = An
k − V (fα : α ∈ A).

In particular, if {Dfα} cover the whole space if and only if {fα} generates the unit ideal. This is the
same as saying there exist fα1 , · · · , fαN that generates 1. This in turn means D(fα1), · · · , D(fαN )
also cover the whole space. The spaceAn

k is quasi-compact.

More generally, any open set is a complement of some V (I), and I is finitely generated so it is finite
union of Df ’s. This shows that Df ’s are a basis of the Zariski topology.

The Zariski topology is not Hausdorff because every two open sets have non-empty intersection,
but it is true that points are closed.
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Definition 5.4. X is called a Noetherian topological space if every decreasing sequence of closed
subsets X1 ⊃ X2 ⊃ · · · ⊃ Xn ⊃ · · · is eventually constant.

The affine spaceAn
k is Noetherian since k[x1, · · · , xn] is. Any closed subset ofAn

k is quasi-compact
and Noetherian.

We now turn to morphisms. A natural notion of a morphism from X to A1
k is just an element

in A(X). A morphism An
k → Am

k is a m-tuple of polynomials F = (f1, · · · , fm). We get a map
F ∗ : k[y1, · · · , ym] → k[x1, · · · , xn] by g 7→ g ◦ F . This is specified by F ∗(yi) = fi which uniquely
determines a k-algebra homomorphism.

An ad hoc definition of a general morphism would be this: If X ⊂ An
k and Y ⊂ Am

k , a morphism
X → Y is a function G : X → Y which is the restriction of a morphism F : An

k → Am
k .

Proposition 5.5. There is a bijection between morphisms G : X → Y and k-algebra homomorphisms
G∗ : A(Y )→ A(X).

Proof. Start fromamorphismF : An
k → Am

k such thatF (X) ⊂ Y . This defines aF ∗ : k[y1, · · · , ym]→
k[x1, · · · , xn]. We claim that F ∗(I(Y )) ⊂ I(X). Granting this claim, the map F ∗ induces a map

k[y1, · · · , ym]/I(Y )→ k[x1, · · · , xn]/I(X)

i.e. a map A(Y ) → A(X). So now we prove the claim. Suppose F (X) ⊂ Y . Then for all x ∈ X ,
F (x) = (f1(x), · · · , fm(x)) ∈ Y . So for every g ∈ I(Y ), we have g(f1(x), · · · , gm(x)) = 0. This
means F ∗(g)(x) = 0, so F ∗(g) ∈ I(X).

In the other direction, if φ : A(Y )→ A(X) is a k-algebra homomorphism, then we have

k[y1, · · · , ym] k[x1, · · · , xn]

A(Y ) A(X)ϕ

Let fi = φ(yi). This uniquely defines a map F ∗ : k[y1, · · · , ym] → k[x1, · · · , xn]. Now define
F (x) = (f1(x), · · · , fm(x)). We easily see that F ∗(I(Y )) ⊂ I(X). Namely, for any g ∈ I(Y ),
g(F (x)) = 0 for all x ∈ X , so F (x) ∈ Y . This means F (X) ⊂ Y . �

This correspondence is contravariant, and the morphisms are continuous in the Zariski topology.
We obtained an equivalence of categories between the category of affine algebraic sets and the
category of reduced finitely generated k-algebras.

But the category of reduced finitely generated k-algebras has a lot of adjective. Our goal will be to
generalize to all commutative rings.

Given a commutative ring R, define SpecR to be the set of all prime ideals in R. Given a ring
morphism f : R→ S, we get f∗ : SpecS → SpecR since the preimage of a prime ideal is prime. If
I ⊂ R is an ideal, define V (I) to be the set of prime ideals that contain I .

Lemma 5.6.

(1) If I1 ⊂ I2, then V (I2) ⊂ V (I1).

(2) V (0) = SpecR. V (r) = ∅ if and only r is a unit.
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(3) V (
∑

α Iα) = ∩αV (Iα).

(4) V (IJ) = V (I ∩ J) = V (I) ∪ V (J).

This proves the V (I)’s form closed set of a topology. This is the Zariski topology.

Example 5.2. Suppose R is a PID (e.g. k[x],Z). If r is not a unit or 0, then V (r) = V (r1) ∪ V (rN )
where r1, · · · , rN are distinct irreducible factors of r. Each V (r1) is a single point since (ri) is max-
imal. So the elements of SpecR are the irreducibles (mod R∗) together with (0).

Note that in any domain R, (0) is not in any proper closed subsets, because that happens exactly
when (r) ⊂ (0) which means r = 0. Thus the closure of the point (0) = η is the entire SpecR. We
say that it is a generic point.

In the case R = k[x], Spec k[x] and the usual A1
k have the same open sets, because non-zero prime

ideals of k[x] are in bijection with point in A1
k. But there is an extra generic point η = (0) that is in

every non-empty open set.

Example 5.3. Let R = k[x1, x2] with k = k. Prime ideals are (0), (f) for f irreducible, and (x1 −
a1, x2 − a2). The closed points are ones of the form (x1 − a1, x2 − a2), and the generic point is (0).
The ones of the form (f) have closure {(f)} union all the points lying on f .

6. Lecture 6: 2023.9.21

Definition 6.1. A ring is graded is R = ⊕d≥0Rd as abelian groups such that RdRe ⊂ Rd+e. A
homomorphism of graded rings f : R→ S is a ring homomorphism such that f(Rd) ⊂ Sd.

Any ringR is trivially graded by settingR = R0. The polynomial ring S = R[x1, · · · , xn] is graded
where Sd is the set of homogenous degree d polynomials. The natural map R → S is a graded
homomorphism. In this grading, each xi has weight 1, but it is possible to assign different weights
to xi, and define the grading of a monomial to be the sum of all these weights.

For a general graded ring R, say r ∈ R is homogenous of degree d if r ∈ Rd. In general, r =
∑

d rd
where rd is the d-th homogenous piece. Here are some observations:

(1) 1 ∈ R0, so R0 is a subring. This is non-obvious but here’s the proof. Let r0 be the 0-th
homogeneous part of 1. If s is homogenous, then s = 1 · s = r0s. Writing any element as a
sum of homogenous ones, we see that s = r0s for any s ∈ R. Thus r0 is the multiplicative
identity.

(2) Rd are R0-submodules of R.

(3) R+ = ⊕d>0Rd is an ideal. This is called the irrelevant ideal.

Definition 6.2. Let I be an ideal of R. I is a homogenous ideal if I = ⊕d≥0(I ∩Rd).

Equivalently, homogenous ideals I are thosewhich can be generated by homogenous elements. For
any r ∈ Rwrite r =

∑
d rd, then r ∈ I if and only if rd ∈ I for any d. We have thatR/I = ⊕d≥0Rd/Id

so it is also graded.

If I, J are graded, then so are I + J, I ∩ J, IJ and rad(I).
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Graded rings arise in nature in the context of projective spaces. For simplicity let k be an alge-
braically closed field. The projective space P1

k as a set is

(kn+1 − {0})/k∗

A point a has homogenous coordinates (a0, · · · , an). There is an inclusion An
k → Pn

k given by
(x1, · · · , xn) 7→ (1, x1, · · · , xn).

Let f ∈ k[x0, · · · , xn] be a polynomial. It defines a closed set V (f) in An
k , but this has no meaning

in Pn
k since points can have different representatives. But if f is homogenous of degree d, then

f(tx) = tdf(x), so it is well-defined to say at which points f vanishes.

More generally, if I ⊂ k[x0, · · · , xn] is a homogenous ideal, we can define V+(I) ⊂ Pn
k to be the set

of points on which all of I vanish. If f ∈ k[x0, · · · , xn] is homogenous of degree d, we can define

f inh ∈ k[y1, · · · , yn]

to be f inh(y) = f(1, y). So V (f inh) = V+(f)∩An
k . The upshot is that the V+(I)’s for I homogenous

defines a topology onPn
k and it induces the Zariski topology onAn

k . Note thatAn
k = Pn

k−{V+(x0)},
so it is an open subset of Pn

k . In fact, n+ 1 copies of An
k cover Pn

k .

Note that in Pn
k there is no such point as (0, · · · , 0), so V+(x0, · · · , xn) = ∅ = V (1), so the usual

Nullstellensatz is false. The correct version is just to ignore this bad example: there is a bijection
between closed sets in Pn

k and homogenous radical ideals not equal to (x0, · · · , xn).

A projective varietyX is an irreducible closed set, which corresponds toV+(p)where p is a homoge-
nous prime ideal. For anyX = V (I) (can take I radical), we have the homogenous coordinate ring
A+(X) = k[x0, · · · , xn]/I , which is graded since I is homogeneous. It is an domain if and only if
X is a projective variety.

In the affine case, A(X) is intrinsic to X , i.e. X ∼= Y if and only if A(X) ∼= A(Y ). In the projective
case, one can define morphisms of closed projective sets (by doing so locally), but A+(X) is not
intrinsic, since it depends on the embedding X ⊂ Pn

k . Morphisms from A+(Y ) → A+(X) don’t
necessarily come from morphisms X → Y . For example, ifm > n we have

k[x0, · · · , xn] ↪→ k[x0, · · · , xm]

but there is no morphism Pm
k → Pn

k : the map (x0, · · · , xm) 7→ (x0, · · · , xn) is not defined at points
of the form (0, · · · , 0, xn+1, · · · , xm).

LetR be a graded ring. DefineProjR to be the set of homogenous prime ideals p inRwhich doesn’t
contain R+. If I is a homogenous ideal, we can still define V+(I) to be the set of prime ideals in
ProjR that contain I . This defines a Zariski topology on ProjR. For example,

ProjR[x0, · · · , xn] = Pn
R

with the usual grading. When R is a field k, we get

Proj k[x0, · · · , xn] = Pn
k

but this is not the same as thePn
k before, in a similar manner how Spec k[x1, · · · , xn] is not the same

as the classicalAn
k .

Modules. We have define the sums, intersections, and quotients of modules. If I ⊂ R is an ideal,
then IM is a submodules ofM . The quotientM/IM is naturally an R/I-module. As an example,
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given Mα, α ∈ A some index set, we defined the objects
∏
αMα and ⊕αMα. If A is any set and

Mα =M for all α, then ∏
α

M ∼=MA = set of all functions A→M

The direct sum is the functions which are 0 for all but finitely many α. Also, if m ∈ M , the cyclic
R-module Rm is the obvious thing. More generally the submodule generated by m1, · · · ,mn is
Rm1 + · · ·+Rmn.

Definition 6.3. The moduleM is finitely generated if there exist somem1, · · · ,mn such thatM =
Rm1 + · · ·+Rmn.

Another way to produce new modules is by taking Homs. IfM,N are R-modules, HomR(M,N)
is the set of all R-module homomorphisms. This is itself an R-module by pointwise addition and
multiplication. In particular, we define the dual moduleM∨ to be HomR(M,R). Hom is a functor
in both arguments, covariant in the codomain and contravariant in the domain.

For
∏
αMα, we have projections πα :

∏
αMα → Mα; for direct sum ⊕αMα we have inclusions

iα : Mα → ⊕Mα . Suppose a module N is equipped with maps fα : N → Mα, then there exists a
unique map f : N →

∏
αMα such that πα ◦f = fα. On the other hand, ifN is equipped with maps

gα :Mα → N , then there is a unique map g : ⊕αMα → N such that gα = g ◦ iα. In other words,

HomR(N,
∏
α

Mα) =
∏
α

HomR(N,Mα)

HomR

(⊕
α

Mα, N

)
=
∏
α

HomR(Mα, N)

In particular, if A is a set, we have the free module FR(A) = ⊕α∈AR. Then we see that

HomR(FR(A),M) = HomR

(⊕
α∈A

R,M

)
=
∏
α∈A

HomR(R,M) =
∏
α∈A

M =MA

Lemma 6.4. Every R-moduleM is a quotient of a free R-module. An R-moduleM is finitely generated if
and only ifM is a quotient of Rn for some n.

Proof. Take A = M and consider FR(A). There is an identity map A → M , which induces a map
FR(M)→M a surjection.

In general, given a finite setm1, · · · ,mn ∈M , there is a map Rn →M where (r1, · · · , rn) is sent to∑
i rimi. SoM is finitely generated if and only if this map is surjective.

�

Definition 6.5. SayM is finitely presented if there is a surjection Rn → M such that the kernel is
also finitely generated.



16 NOTES BY WENQI LI

7. Lecture 7: 2023.9.26

A complexM ′ α−→M
β−→M ′′ is exact atM if the image of α is equal to the kernel of β. A complex is

exact if it is exact at every spot where it makes sense (not the head or tail). A short exact sequence
is an exact complex of the form

0→M ′ →M →M ′′ → 0.

A morphism of short exact sequences of short exact sequences are maps in the three spots such
that the entire diagram commutes.

Given a morphism α :M1 →M2, we get an exact sequence

0→ ker(α)→M1
α−→M2 → coker(α)

The cokernel of the kernel is the same as the kernel of the cokernel, which are both the image of α.

Lemma 7.1. Let 0 → M ′ i−→ M
π−→ M ′′ → 0 be a short exact sequence of R-modules. The following are

equivalent:

(1) there exists s :M ′′ →M such that π ◦ s = idM ′′

(2) there exists r :M →M ′ such that r ◦ i = idM ′

(3) there exists an isomorphism f :M →M ′ ⊕M ′′ such that

0 M ′ M M ′′ 0

0 M ′ M ′ ⊕M ′′ M ′′ 0

i π

f

is an isomorphism of short exact sequences.

Proof. 3 to 1: Let s be the map given byM ′′ →M ′ ⊕M ′′ f−1

−−→M . 3 to 2 is of course the same.

1 to 3: Suppose there exists s :M ′′ →M such that π ◦ s = idM . Observe that
M = ker(π)⊕ Im(s)

For each m ∈ M , let m2 = s(π(m)) and let m1 = m −m2, then m2 ∈ Im(s) and m1 ∈ ker(π). If
m ∈ ker(π) ∩ Im(s), then letm = s(m1) andm1 = π(s(m1)) = 0, som = 0. �

Definition 7.2. A short exact sequence is called split if the conditions of the lemma is met.

Example 7.1. 0→ C[x]
x−→ C[x]→ C[x]/(x)→ 0 is not split. Let R = C[x, y].

0→ R→ R⊕2 → (x, y)→ 0

given by c 7→ (cy,−cx) and (a, b) 7→ xa + yb is a short exact sequence. It is not split since the first
map has no left inverse.

Lemma 7.3. If 0→M ′ →M →M ′′ → 0 if short exact, andM ′′ is free, then it is split.

Proof. Let {ei} be a basis ofM ′′. Letmi be such that ei = π(mi). Let s be defined by s(ei) = mi. �
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Lemma 7.4 (snake). Given a map of short exact sequences, we get a 6-term exact sequence.
0→ ker→ ker→ ker→ coker→ coker→ coker→ 0.

Proposition 7.5. Suppose 0 → M ′ → M → M ′′ → 0 is a short exact sequence. Then for any R-module
N , the following are exact

0→ HomR(N,M
′)→ HomR(N,M)→ HomR(N,M

′′)

0→ HomR(M
′′, N)→ HomR(M,N)→ HomR(M

′, N)

Definition 7.6. AnR-module P is called projective if for any surjection π :M ′ →M ofR-modules,
everymap φ : P →M can be lifted to amap φ′ : P →M ′. In other words, given any solid diagram,
there exists a dashed map like this:

M ′′

P M

Lemma 7.7. Every short exact sequence 0→M ′ →M → P → 0 with P projective splits.

Proof.
0 M ′ M P 0

P

id
s

�

We proved that every free module is projective, so every module is a quotient of a projective mod-
ule. This means that the category of R-modules has enough projectives.

Example 7.2. IfR = R1×R2, we can write 1 = (1, 0)+ (0, 1) a sum of idempotents. TheR-module
R1 × 0 is projective but not free. As a concrete example,C[x]/(x(x− 1)) isomorphic toC×C, but
C[x]/(x) is not free over C[x]/(x(x− 1)).

Lemma 7.8. A module P is projective if and only if it is a summand of a free module.

Proof. Assume P is projective. Pick a surjection F → P with F free. Using the definition of pro-
jective modules, this surjection splits, so P is a direct summand.

On the other hand, suppose P ⊕ Q = F for some free module F . Suppose there a surjection
M ′ → M and a map φ : P → M . We can extend φ by 0 on Q to get a map F → M . But F is
projective, so it lifts to a map ψ : F →M ′′. Then ψ|P is what we want. �

Definition 7.9. An R-module I is injective if for any injection i : M → M ′, every map ψ : M → I
can be extended to a map ψ′ :M ′ → I .

M I

M ′
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Projective modules are easier than injectives because of the presence of free modules. Injectives
are not so easy. A characterization of injective Z-modules is that I is injective if and only if it is
divisible: for any x ∈ I and n ∈ Z non-zero, there exists y ∈ I such that ny = x. In fact, this works
over any PID.

Lemma 7.10. Suppose R is a ring and a is not a zero divisor. Then if I is injective, then I is a-divisible:
a : I → I is surjective.

Proof.
R I

R

a

r 7→rx

�

8. Lecture 8: 2023.9.28

Definition 8.1. An R-moduleM is artinian if it satisfies the descending chain condition.

Lemma 8.2. Let M be an R-module. Then M is noetherian if and only every submodule of M is finitely
generated. This is also equivalent to every non-empty collection of submodules has a maximal element.

Proof. Easy. �

Lemma 8.3. LetM be an R-module. The following are equivalent:

(1) M is artinian

(2) every non-empty collection of submodules has a minimal element.

Proof. Easy. �

Example 8.1. If R is a k-algebra, k is a field, and dimk(M) <∞, thenM is artinian as a R-module.

An artinian module not of this form is this: let R = k[x]. Let M − k[x, x−1]/k[x] where the quo-
tient is as k-vector spaces. This has the basis 1

xn as a vector space. The only submodules are 0,
1
xnk[x]/k[x],M .

Another example is Q/Z as a Z-module.

Lemma 8.4. If 0→ M ′ → M → M ′′ → 0 is a short exact sequence of R-modules. ThenM is noetherian
if and only ifM ′ andM ′′ are noetherian. M is artinian if and only ifM ′ andM ′′ are artinian.

Proof. If there is a chain in M , one can look at its image in M ′′ which stabilizes, and then look at
the intersection of it withM ′, which will also stabilize. �

Corollary 8.5. Finite direct sums of noetherian(artinian) modules are also noetherian(artinian).
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Corollary 8.6. If R is a noetherian ring, then R⊕n is noetherian, so any quotient of R⊕n is noetherian, i.e.
any finitely generated R-module is noetherian.

Corollary 8.7. If R is noetherian andM is an R-module. The following are equivalent:

(1) M is noetherian

(2) M is finitely generated

(3) M is finitely presented.

It is true that artinian rings are noetherian, but it is not so obvious.

Lemma 8.8. LetM be an R-module. The following are equivalent:

(1) M is both noetherian and artinian

(2) M has a composition series, i.e. there exists a filtration

0 ⊂M1 ⊂ · · · ⊂Mn =M

such that for each i,Mi/Mi−1 is a simple R-module.

Lemma 8.9. M simple if and only ifM ∼= R/m for some maximal ideal m.

Proof. If S ⊂ R/m is a submodule, then the inverse of S in R is an ideal containing m. So S = R/m
or S = 0.

Now supposeM is a simple R-module. Let m ∈ M be any non-zero element. Then Rm is a non-
zero submodule, so Rm = M by simplicity. Thus M ∼= R/I where I is the annihilator of m. As
before there is no ideal that strictly contains I , so I is maximal.

�

Lemma 8.10. LetM be an R-module and let I be an ideal of R. IfM is finitely generated and IM = M ,
then there exists f ∈ 1 + I such that fM = 0.

Proof. Use induction to reduce to the case of cyclic modules where this is clear.

Here is another proof with matrices. LetM be generated by m1, · · · ,mn. Then each mi ∈ IM , so
mi =

∑
j xijmj for some xij ∈ I . Thismeans that thematrix I−(xij)ij kills the vector (m1, · · · ,mn).

For any matrix T over any ring R, there is another matrix T adj such that

det(T )I = T adjT

Therefore we see that det(T ) ∈ R kills (m1, · · · ,mn). Furthermore, det(I) is in 1 + I because
xij ∈ I . �

Lemma 8.11 (Nakayama’s Lemma, first version). LetM be a finitely generated R-module and let I be
an ideal of R. If IM =M and I is in the Jacobson radical J(R) of R, thenM = 0.
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Proof. Use the previous lemma to find a f ∈ 1 + I such that fM = 0. But any element in 1 + J(R)
is a unit, soM = 0. �

As an application, let’s prove the following: LetR be a local ring withmaximal idealm and residue
field k, LetM be a finitely generatedR-module. Let x1, · · · , xr be elements whose images generate
the k-vector spaceM/mM . Then x1, · · · , xr generatesM .

The proof is like this. Let N = M/(Rx1 + · · · + Rxr). The goal is to show N = 0. N is finitely
generated because it is a quotient of M . Pick y ∈ N , then y is the image of some z ∈ M modulo
Rx1 + · · ·+Rxr. By assumption, the image of z inM/mM is a sum

∑
λixi for some λi ∈ k. Say λi

has a lift ξi in R. Then
z − ξ1xi − · · · − ξrxr ∈ mM

This means y ∈ mN , i.e. N = mN . So we are done by Nakayama’s lemma.

A variant: if (R,m, k) is a local ring and φ : M → N is a map of finitely generated modules. Then
φ is surjective if and only if φ :M/mM → N/mN is surjective.

Corollary 8.12. Over a local ring (R,m, k), a finitely generated projective module P is free.

Proof. Pick x1, · · · , xr ∈ P which maps to a basis of P/mP . The by the previous lemma we obtain
a surjection

φ : R⊕r → P

This splits because P is projective. Let s be its right inverse. Note that s is an isomorphism on the
level of k-vector spaces because it is a surjection between vector spaces with the same dimension.
This proves that s is a surjection by the previous statement. Think to see s is actually the inverse of
φ, or use the FREDHOLD ALTERNATIVE. �

Lemma 8.13. Let R be any ring andM a finitely generated R-module. Then any surjective map φ :M →
M is an isomorphism

Proof. Let A = R[x]. ThenM is an A-module where x acts via φ. Then φ being surjective is equiv-
alent to (x)M =M . Then there exists f = 1+ i for i ∈ I such that fM = 0. Let i = r1x+ · · ·+ rtx

t.
We see that for allm ∈M ,

(1 + r1x+ · · ·+ rtx
t)m = 0

so
m = −(r1 + · · ·+ rtx

t−1)xm

This proves that φ has an inverse given by r1 + · · ·+ rtφ
(t−1). �

9. Lecture 9: 2023.10.3

Definition 9.1. IfM1,M2, N are R-modules, a bilinear map is a map f : M1 ×M2 → N such that
it is linear in both variables. Denote by Bil(M1,M2;N) the set of all bilinear maps.

As an example, HomR(M,N)×M → N given by evaluation is bilinear.
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Definition 9.2. A tensor productM1 ⊗R M2 is an object that satisfies the universal property: it is
equippedwith aR-bilinearmap t :M1×M2 →M1⊗RM2, and for any bilinearmap f :M1×M2 →
N , there exists a unique R-linear map F : M1 ⊗R M2 → N such that f = F ◦ t. In other words,
Bil(M1,M2;N) ∼= HomR(M1 ⊗M2, N).

As a solution to a universal property, any 2 tensor products are isomorphic by a unique isomor-
phism.

Proposition 9.3. Tensor product exists for any R-modulesM1,M2.

Proof. Start with the freemodule FR(M1×M2). There is anR-linearmapM1×M2 → FR(M1×M2)
by doing nothing. LetQ be the submodule of FR(M1×M2) generated by (m1+m2, n)− (m1, n)−
(m2, n), etc. the relations of bilinearity. Then letM1 ⊗RM2 be FR(M1 ×M2)/Q. Denote the image
of (m1,m2) bym1⊗m2. Then we get a map t :M1×M2 →M1⊗M2 such that t(m1,m2) = m1⊗m2

that is bilinear.

Given f : M1 ×M2 → N bilinear, we obtain a map FR(M1 ×M2) → N . The fact that f is bilinear
exactly means f(Q) = 0, so it induces a unique mapM1 ⊗RM2 → N that commutes with f and t
(check on generators (m1,m2)). �

From the construction we see that tensor productM1⊗RM2 is generated by pure tensorsm1⊗m2.
This implies, for example, if two maps agrees on pure tensors then the two maps are equal.

Similarly, we can define a tensor product of k modules as the object having the universal property
with bilinear replaced with multilinear.

Some comments: Bil(M1,M2;N) ∼= HomR(M1,HomR(M2, N)) by the obvious correspondence.
Likewise, multilinear maps can be iteratively written as linear maps.

Using the universal property of tensor products, we get some properties:

(1) M1 ⊗RM2
∼=M2 ⊗M1

(2) M1⊗R (M2⊗RM3) ∼= (M1⊗RM2)⊗RM3
∼=M1⊗RM2⊗RM3. (Use the universal property

of 3-tensor and 3-linear maps.)

(3) (M1 ⊕M2)⊗RM3
∼=M1 ⊗RM3 ⊕M2 ⊗RM3

(4) R⊗RM ∼=M .

(5) R⊕n ⊗R R⊕m ∼= R⊕mn

(6) Let f1 :M1 → N1 and f2 :M2 → N2 beR-module homomorphisms. Then we get a unique
map f1 ⊗ f2 :M1 ⊗RM2 → N1 ⊗R N2 such that (f1 ⊗ f2)(m1 ⊗m2) = f1(m1)⊗ f2(m2).

The first application of tensor product is change of rings. Let S be an R-algebra, and letM be an
R-module. We can form the tensor product S ⊗RM , which is of course an R-module. But it is in
fact an S-module. The S-module structure is (s1, s2⊗m) 7→ (s1s2)⊗m. Now note that S⊗RM have
2 R-module structures: the other one is through the ring map R→ S and the S-module structure.
The two structures are the same.
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As an example, there is an canonical isomorphism S ⊗R (R⊕n) ∼= S⊕n. In particular, if k ⊂ K are
fields and V is a k-vector space, thenK ⊗k V is aK-vector space.

The second application is the tensor product of two R-algebras. Let S and T be R-algebras. We
allow them to be non-commutative (but the image of R should be in the center of each). We can
S ⊗R T an R-module. We want to define multiplication

(S ⊗R T )⊗R (S ⊗R T )→ S ⊗R T
(It is a map from the tensor product since multiplication needs to be bilinear and commutes with
the R action, so that S ⊗R T is an R-algebra.) The way to define it is to define a multilinear map

(s1, t1, s2, t2) 7→ (s1s2)⊗ (t1t2).

As an example, let T = R[x]. Then S ⊗R R[x] ∼= S[x] as rings and as R-algebras. Applying this to
S = R[y], we getR[x]⊗RR[y] ∼= R[x, y]. For a non-commutative example, S⊗Matn(R) ∼= Matn(S).

A fun problem: Let H be the quaternion algebra over R with basis 1, i, j, k. What is H ⊗R H?
Answer: Mat4(R).

Note: if S and T are R-algebras (commutative), then S ⊗R T is a coproduct in the category of
commutative R-algebras. In other words, there exists R-algebra maps i1 : S → S ⊗R T and i2 :
T → S⊗R T , and given any f1 : S → A and f2 : T → A, there exists a unique map F : S⊗R T → A
such that f1 = F ◦ i1 and f2 = F ◦ i2. To prove this, the tensor product universal property gives
the correct R-module map, but still need to check it is an R-algebar map. This requires A being
commutative.

Exactness properties of tensor products.

Proposition 9.4. IfM ′ →M →M ′′ → 0 is an exact sequence of R-modules andN is an R-module, then
M ′ ⊗R N →M ⊗R N →M ′′ ⊗R N → 0

is exact.

Note ⊗RN is not exact on the left: an injection M ′ → M doesn’t give an injection M ′ ⊗R N →
M ⊗R N . Tensor products preserves surjections but not injections.

Examples: If I is an ideal in R andM is an R-module, then R/I ⊗RM ∼=M/IM as R/I-modules.
The proof is to consider I → R→ R/I → 0. Tensoring byM to get

I ⊗RM → R⊗RM → (R/I)⊗RM → 0

The middle term is isomorphism toM . The left term is not necessarily IM , but its image inM is
IM .

10. Lecture 10: 2023.10.5

Example 10.1. Let k be a field, and K a finite extension of k. We can form K ⊗k K, which is a
k-algebra. If K is a Galois extension over k, then K ⊗k K ∼= Kd as rings where d = [K : k]. This
is not a domain, but it is reduced. If we just assume that K/k is separable, then K ⊗k K is still a
product of fields, so it is reduced. IfK/k is not separable, thenK ⊗k K may not be reduced.

Example 10.2. Let k be algebraically closed. If X and Y are closed algebraic sets of An
k and Am

k

defined by I(X) and I(Y ), then it is easy to see that X × Y ⊂ Am+n
k is a closed algebraic subset.



COMMUTATIVE ALGEBRA 23

If we denote the ring ofAn
k by k[x1, · · · , xn] = k[X], and similarly the ring ofAm

k by k[y1, · · · , ym] =
k[Y ], then the ring ofAm+n

k is k[X,Y ] = k[X]⊗k k[Y ]. The subsetX × Y is then V (I(X)k[X,Y ] +
I(Y )k[X,Y ]). The affine coordinate ring of X × Y is isomorphic to A(X)⊗k A(Y ).

It is also easy to see that if X and Y are irreducible, then X × Y is an irreducible subset of Am+n
k .

This is saying that ifA(X) andA(Y ) are domains, then so isA(X)⊗kA(Y ). More generally, ifR,S
are any k-algebras, then R,S reduced implies R⊗k S reduced; if R,S are domains, then R⊗k S is
a domain.

Suppose R = A(Z), S = A(X), T = A(Y ). Suppose S, T are R-algebras, i.e. there are maps
A(Z) → A(X) and A(Z) → A(Y ). This corresponds to morphisms (of algebraic sets) f : X → Z
and g : Y → Z. As sets, the fiber product X ×Z Y is by definition

{(x, y) ∈ X × Y | f(x) = g(y)}

This comes with a morphism h : X ×Z Y → Z by h(x, y) = f(x) = g(y). This is called the fiber
product for the following reason. Let Xz = f−1(z) and Yz = g−1(z). Then (X ×Z Y )z = Xz × Yz .

The idea is that A(X) ⊗A(Z) A(Y ) “is” the ring A(X ×Z Y ). But in general this tensor product is
not reduced. The general picture is that SpecS ×SpecR SpecT = Spec(S ⊗R T ).

Nowwe go back to the exactness properties of tensor products. We prove that⊗RN is a right exact
functor.

Proof. The situation is that
0→M ′ f−→M

g−→M ′′ → 0.

The first thing to check is that g ⊗ id is surjective. The tensor product M ′′ ⊗R N is generated by
m ⊗ n, and g is surjective, so m = g(x) for some x ∈ M . Thus the image contains generators, so
g ⊗ id is surjective.

We then check Im(f ⊗ id) = ker(g ⊗ id). Certainly the composition is 0, so we just need to show
ker(g ⊗ id) ⊂ Im(f ⊗ id). Let I = Im(f ⊗ id). Since I is contained in the kernel, we get a map
(M ⊗R N)/I → M ′′ ⊗ N . It suffices to show that this is an isomorphism. To do this, we need to
find h :M ′′ ⊗N → (M ⊗R N)/I . Define

h̃ :M ′′ ×N → (M ⊗R N)/I

(m,n) 7→ (m̃⊗ n)mod I

where m̃ is a lift ofm, i.e. g(m̃) = m. This is well-defined, since any other choice of a lift ofm is of
the form m̃ + f(x) for some x ∈ M ′ by the exactness of the original sequence, so the difference is
f(x)⊗nwhich is in I . This is clearlyR-bilinear, so we obtain the map h. Checking on pure tensors
shows that h is the inverse.

�

The application we mentioned last time is (R/I)⊗RM ∼=M/IM . As an example,
(Z /nZ)⊗Z (Z /mZ) ∼= (Z /mZ)/(nZ /mZ) ∼= Z /dZ

where d = gcd(m,n). Warning: I ⊗R M is not necessarily isomorphic to IM . It is only when
I ⊗RM →M is injective. An example of such failure is: I = nZ ∼= Z as Z-modules. We have

0→ I → Z→ Z /nZ→ 0
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Tensoring by Z /nZ, we get

nZ⊗Z /nZ→ Z /nZ→ (Z /nZ)⊗Z (Z /nZ)→ 0

but the first map is the zero map.

Note thatQ⊗Z Z /nZ = 0 for any n. Question: what isQ⊗Z Q?

Corollary 10.1. IfM,N are finitely generated R-modules, then so isM ⊗R N .

Proof. Tensor the surjection Rk →M by N to get a surjection Rk ⊗R N →M ⊗R N . We know that
Rk ⊗R N ∼= Nk is finitely generated. �

Corollary 10.2. IfM is a finitely generated R-module and J is an ideal contained in the Jacobson radical
of R, then so is M ⊗R (R/J) = 0 implies M = 0. In particular, if R is local with maximal ideal m, and
k = R/m, thenM ⊗R k = 0 impliesM = 0.

Proof. M ⊗R (R/J) ∼=M/JM , so it becomes the usual statement of Nakayama’s lemma. �

Corollary 10.3. LetR be local withmaximal idealm and k be its residue field. LetM,N be finitely generated
R-modules. ThenM ⊗R N = 0 impliesM = 0 or N = 0.

Proof. Suppose N 6= 0. Then the k-vector space N/mN 6= 0 by the previous corollary. Choose a
surjection N → N/mN → k → 0 and tensor withM . We get

M ⊗R N →M ⊗R N/mN →M ⊗R k → 0

ThusM ⊗R k = 0, so the previous corollary impliesM = 0. �

We switch gears to flatness.

Definition 10.4. An R-moduleM is flat if tensoring withM preserves injections. In other words,
tensoring withM is exact.

A trivial example is that R is a flat R-module, since tensoring with R does nothing.

Example 10.3. ⊕αNα is a flat R-module if and only if each Nα is flat. IfM ′ →M is injection, then
tensoring gives ⊕

α

(M ′ ⊗R Nα)→
⊕
α

(M ⊗R Nα)

which is injective if and only if it is injective on each factor. In particular, Rk is flat.

This also implies a projective module P is flat. This is because P ⊕ P ′ = FR(A) for some free
module FR(A), the free module is flat, so its direct summand P is flat. In summary, free implies
projective implies flat. As an example,Q is a flat Z-module but not projective or free.

Definition 10.5. Let R be a domain. An R-module M is torsion free if whenever rm = 0, either
r = 0 orm = 0.
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If R is a domain, a flat R-module M is torsion free. This is because we can tensor the injection
0→ R

r−→ R by N .

If R is a PID, then flatness is equivalent to torsion free. This fails when R is not a PID. Consider
R = k[x, y] and m = (x, y) ⊂ R. This is torsion free but not flat.

11. Lecture 11: 2023.10.10

Proposition 11.1. For an R-module N , the following are equivalent:

(1) N is flat

(2) for all finitely generated R-modules M ′ and all injections M ′ → M , M ′ ⊗R N → M ⊗R N is
injective

(3) for all ideals I ⊂ R, I ⊗R N → N is injective.

(4) for all finitely generated ideals I ⊂ R, I ⊗R N → N is injective.

Proof. It is clear that 1 implies all the rest. The first step is to prove 2 implies 1. Assume 2. Suppose
M ′ f−→M is an injection for arbitraryR-modules. Let

∑
mi⊗ni be in the kernel of f⊗ idN . We need

to show that
∑
mi ⊗ ni = 0 in M ′ ⊗R N . We want to find finitely generated modules M ′

0 ⊂ M ′,
M0 ⊂M such thatmi ∈M ′

0 and f(mi) ∈M0, together with a map g :M ′
0 →M0. TakeM ′

0 to be the
submodule generated bymi’s. We know thatM ⊗RN is a quotient of the free module FR(M ×N)
by some relations, so the formal sum ∑

(f(mi), ni)

is in the submodule generated in these relations. We can thus write
∑

(f(mi), ni) as a finite sum of
the relations. Now letM0 be the submodule ofM generated by f(mi) and all the first coordinates
of the relations used to express

∑
(f(mi), ni). This is finitely generated.

Therefore the restriction of f toM ′
0 maps intoM0, and

∑
f(mi) ⊗ ni = 0 since the relations used

to make it 0 is inM0. This means that
∑
mi ⊗ ni is in the kernel of the restriction of f toM ′

0. By
assumption 2, we get that

∑
mi ⊗ ni = 0.

4 implies 3 is the same proof. It remains to show 3 implies 2.

Step 1: We claim that if S is a submodule of Rk, then S ⊗R N → Rk ⊗R N = Nk is injective. The
proof is by induction on k. If k = 1, then S is an ideal of R, so the statement is by hypothesis.
Assume this is true for k − 1. Then let S′′ be the image of S under the projection Rk → Rk−1. Let
S′ be the kernel. So we have the diagram

0 S′ S S′′ 0

0 R Rk Rk−1 0

Tensoring with N , we get

S′ ⊗R N S ⊗R N S′′ ⊗R N 0

0 N Nk Nk−1 0
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where the left and right vertical arrows are injections by induction hypothesis and the base case.
This implies the middle arrow is also injective by chasing the diagram.

Step 2: General case: LetM ′ be a submodule ofM andM is finitely generated, so there is a surjec-
tion Rk →M . Let S0 be the kernel of Rk →M . Let S be the preimage ofM ′ in Rk. We obtain

0 S0 S M ′ 0

0 S0 Rk M 0

Tensoring by N , we see that the left and middle arrows remain injective, which then implies the
right arrow is also injective.

�

Corollary 11.2. If R is a PID andM is an R-module, thenM flat if and only ifM is torsion free.

Proof. Assume M is torsion free. For any non-zero I ⊂ R, we know that I = (a), so I ∼= R as
R-modules. Then the map I ⊗R M → M is identified with R ⊗R M → M where the map is
multiplication by a. Torsion-freeness impleis multiplication by a is injective, so we are done. �

Theorem 11.3. Let N be an R-module. The following are equivalent:

(1) N is flat

(2) for every r1, · · · , rk ∈ R, m1, · · · ,mk ∈ N , if
∑

i rimi = 0 in N , then there exists some sij ∈ R
and some nj ∈ N for 1 ≤ i ≤ k and 1 ≤ j ≤ `, such that

∑
i risij = 0 and mi =

∑
j sijnj . In

other words, every relation in N is a consequence of a relation in R.

Proof. AssumeN is flat. Suppose
∑

i rimi = 0. Then there is a mapRk → R by sending (t1, · · · , tk)
to
∑
riti. LetK be the kernel of this map. Tensoring everything with N , we get

0→ K ⊗R N → Nk → N → 0

and the last map sends (x1, · · · , xn) to
∑
rixi. The hypothesis is that

∑
i rimi is in the image of

K ⊗R N . Therefore, there exists σj ∈ K and nj ∈ N such that∑
j

σj ⊗ nj 7→ (m1, · · · ,mk)

Since σj ∈ K, we know that σj = (s1j , · · · , skj) ∈ Rk such that
∑

i risij = 0. Substituting this in,
we get what we want.

Now assume 2 is true. To prove N is flat, we want to show I ⊗R N → N is injective for all ideals I
in R. An element in the kernel of this map is some element

∑
i ri ⊗mi and

∑
i rimi = 0 in N . The

hypothesis provides nj , sij such that
∑

i risij = 0 andmi =
∑

j sijnj . Therefore∑
i

ri ⊗mi =
∑
i

ri ⊗ (
∑
j

sijnj) =
∑
j

∑
i

(risij)⊗ nj = 0

�



COMMUTATIVE ALGEBRA 27

Corollary 11.4. Let R be a local ring. LetM be a finitely generated R-module. ThenM is flat if and only
ifM is projective, if and only ifM is free.

Proof. We know that free implies projective implies flat. So assumeM is flat. Letm be the maximal
ideal and k be the residue field. ThenM/mM =M ⊗R k is finitely generated over k, so it is a finite
dimensional vector space. Choose a basis e1, · · · , en, and choose lifts m1, · · · ,mn ∈ M . Then we
get a map f : Rn → M given by (r1, · · · , rn) 7→

∑
rimi, and the composition Rn → M → M/mM

is surjective. By Nakayama’s lemma, this implies f is surjective. We get
0→ K → Rn →M → 0

Wewant to showK = 0, namely if
∑

i rimi = 0 then ri = 0 for all i. We will use induction to prove∑k
i=1 rimi = 0 then ri = 0. For k = 1, if r1m1 = 0, then by the previous theorem, we know that

there exists sj ∈ R and nj ∈ M such that r1sj = 0 and m1 =
∑

j sjnj . Note that m1 is not in mM

since it maps to e1 6= 0, so there exists some j such that sj /∈ m. This means sj is a unit, so r1sj = 0
implies r1 = 0. The inductive step is similar. �

Now we start the topic of localization.

Definition 11.5. LetR be any ring. S is a multiplicative subset ofR if it contains 1, and if s1, s2 ∈ S
then s1s2 ∈ S. Denote the localization by S−1R.

12. Lecture 12: 2023.10.12

Example 12.1. Let p be a prime in Z. Write Zn for Z localized at {1, n, n2, · · · }which is just Z[1/n].
Note that for example Z[1/6] = Z[1/72]. Write Z(p) for the localization of Z at the prime ideal (p).

Example 12.2. Let R = k[x1, · · · , xn] where k is algebraically closed. Let f ∈ R. The localization
Rf is k[x1, · · · , xn, 1/f ]. Let m be the maximal ideal (x1 − a1, · · · , xn − an). Then R − m is the set
of functions that doesn’t vanish at a = (a1, · · · , an). The localization Rm is then {f/g | g(a) 6= 0},
which is the set of rational functions defined on some open neighborhood of a.

Similarly, if p is a prime ideal, then V (p) is an affine variety X . Then Rp is the set
{f/g | g is not identically 0 on X}.

All rational functions defined at some point on X , i.e. defined on some open subset of X .

Example 12.3. Let R be any ring. The localization Rr can be thought of as R[x]/(1− xr). Rr = {0}
if and only if r is a nilpotent, equivalent to 1− xr is a unit in R[x].

Proposition 12.1. Let S be a multiplicative subset ofR. Let f : R→ T be a ring homomorphism such that
f(S) ⊆ T×. Then there exists a unique homomorphism f̃ : S−1R→ T of R-algebras.

Proof. Define f̃(r/s) = f(r)f(s)−1. If r1/s1 = r2/s2, then there exists some t ∈ S such that ts2r1 =
ts1r2. Then f(t)f(s2)f(r1) = f(t)f(s1)f(r2). Since f(t) is a unit in T , we can cancel it and see that
f̃ is well-defined. �

Corollary 12.2. The only R-algebra automorphism on S−1R is the identity.
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An application: given r1, r2 ∈ R, we can localize twice (Rr1)r2 , or (Rr2)r1 , or just formRr1r2 . These
are all canonically isomorphic since they satisfy the same universal property.

Ideals in a localization.

Let φ : R→ S−1R be the natural map. If I is an ideal inR, let IS−1R be the ideal in S−1R generated
by the image of I . Then IS−1R = {r/s | r ∈ I, s ∈ S} because the right side is an ideal.

Proposition 12.3. Let J be an ideal in S−1R. Let I = φ−1(J) ⊆ R. Then J = IS−1R.

Proof. The inclusion IS−1R ⊆ J is clear by definition. Now let r/s ∈ J . Then s(r/s) ∈ J , so
r/1 ∈ J . This means r ∈ I by definition of φ, so r/s ∈ IS−1R by the previous discussion. �

Proposition 12.4. Let p be a prime ideal in R. If p ∩ S is not empty, then pS−1R = S−1R. If p ∩ S = ∅,
then pS−1R is a prime ideal in S−1R, and φ−1(pS−1R) = p. So there is a bijection between prime ideals
in S−1R and prime ideals in R avoiding S.

Proof. Assume p ∩ S = ∅. Suppose φ(r) ∈ pS−1R. Then r/1 = r′/s for some r′ ∈ p. So tsr = tr′

for some t ∈ S. Thus tsr ∈ p, but s, t /∈ p, so r ∈ p. This proves that φ−1(pS−1R) = p. The same
reasoning shows that pS−1R is a prime ideal.

On the other hand, if Q is a prime ideal in S−1R, then φ−1(Q) is a prime ideal in R. The previous
proposition tells us that Q = φ−1(Q)S−1R. This establishes the bijection. �

Corollary 12.5. R noetherian implies S−1R noetherian. R artinian implies S−1R artinian.

Proof. Chain of ideals is preserved. �

Corollary 12.6. If p is a prime ideal in R, then Rp is a local ring with maximal ideal pRp. The residue field
is Rp/pRp, which is also the field of fractions of R/p.

Localization of Modules.

Let S be a multiplicative set of R and M be an R-module. Define S−1M to be fractions m/s for
s ∈ S, and m1/s1 = m2/s2 if and only if there exists some t ∈ s such that t(m1s2 − m2s1) = 0.
The action r

s ·
m
s′ = rm

ss′ makes S−1M an S−1R-module. There is a natural map φ : M → S−1M . If
S = R− p, denote byMp the localization.

Localization is functorial: if f : M → N , there is a map f̃ : S−1M → S−1N by sending m/s to
f(m)/s.

Given R,S,M , there are two ways of producing S−1R-module. One is S−1M , and the other is
(S−1R)⊗RM .

Lemma 12.7. S−1M is functorially isomorphic to (S−1R)⊗RM as S−1R-modules.

Proof. On one hand, there is an R bilinear map
(r/s,m) 7→ rm/s

On the other hand, we can define S−1M → (S−1R)⊗RM by sending (m, s) 7→ (1/s)⊗m. �
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Proposition 12.8. M 7→ S−1M is an exact functor.

Proof. Suppose M ′ g−→ M
f−→ M ′′ is exact. Consider f̃ and g̃. The clearly g̃ ◦ f̃ = 0. Suppose

g̃(m/s) = 0. Then g(m)/s = 0, so there exists t ∈ S such that tg(m) = 0. This means g(tm) = 0, so
by exactness tm = f(n) for some n ∈M ′. Thusm/s = f̃(n/ts). �

Corollary 12.9. S−1R is a flat R-module.

Proof. Tensoring with S−1R is the same as localizing at S, which is exact. �

For example,Q is a flat Z-module.

There are all sorts of properties. E.g.

(1) S−1(M1 +M2) = S−1M1 + S−1M2

(2) S−1(M1 ∩M2) = S−1M1 ∩ S−1M2

(3) S−1(M/N) = S−1N/S−1M

13. Lecture 13: 2023.10.19

We look into local properties of a ring R or a moduleM : a property P is said to be local if P holds
for R if and only if P holds for Rp for all prime ideals p. (or all maximal ideal)

Proposition 13.1. LetM be an R-module. ThenM = {0} if and only ifMp = {0} for all prime ideals p
in R, if and only ifMm = {0} for all maximal ideals m in R.

Proof. Suppose Mm = {0} for all maximal ideals m in R. Assume M is non-zero. Choose some
x ∈ M non-zero. Let I be the annihilator ofm, i.e. I = {r ∈ R | rm = 0}. Sincem is non-zero, we
know 1 /∈ I , so I is a proper ideal. Then there exists a maximal idealm containing I . We know that
Mm = 0, so there exists s /∈ m such that sm = 0. But s ∈ I ⊆ m, which is a contradiction. �

Corollary 13.2. LetM,N be R-modules. Let f : M → N be a homomorphism. Then f is injective if and
only if for all prime ideals p (or all maximal m), fp :Mp → Np is injective. Surjectivity can also be checked
locally this way. Same is true for isomorphism.

Proof. Let K = ker f , then there is an exact sequence 0 → K → M → N . Localizing we get
0→ Kp →Mp → Np. Now whetherK is zero can be checked locally. �

A non-trivial fact is that

Proposition 13.3. LetR be a ring andM anR-module. ThenM is flat overR if and only ifMp is flat over
Rp for all prime ideals p, if and only ifMm is flat over Rm for all maximal ideals m.

We need some lemmas to prove the above proposition.
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Lemma 13.4. Let R be a ring and T an R-algebra. LetM1 be an R-module andM2 be a T -module (and
hence an R-module). Then for all T -modules N , we have

(M1 ⊗RM2)⊗T N ∼=M1 ⊗R (M2 ⊗T N)

Lemma 13.5. Let R be a ring, T an R-algebra, andM an R-module. ThenM is flat over R thenM ⊗R T
is flat over T .

Proof. Let N be a T -module. Then

(M ⊗R T )⊗T N ∼=M ⊗R (T ⊗T N) ∼=M ⊗R N

If N ′ → N is an injection of T -modules, then tensoring withM ⊗R T we just get

M ⊗R N ′ →M ⊗R N

This is injective sinceM is R-flat. �

Lemma 13.6. Let R be a ring and T an R-algebra. LetM1,M2 be R-modules. We have

(M1 ⊗RM2)⊗R T ∼= (M1 ⊗R T )⊗T (M2 ⊗R T ).

Proof. Omitted. �

Proof of 13.3. IfM is flat, thenM ⊗R Rp =Mp is flat over Rp by Lemma 13.5.

Now supposeMm is flat over Rm for all maximal m. LetN ′ → N be an injection of R-modules. We
know that N ′

m → Nm is injective. By flatness ofMm, we get

N ′
m ⊗Rm Mm → Nm ⊗Rm Mm

is an injection. Using Lemma 13.6 with T = Rm, we see that

Nm ⊗Rm Mm
∼= (M ⊗R N)⊗Rm = (M ⊗R N)m

So we get that (N ′⊗RM)m → (N ⊗RM)m is injective for all maximal ideal m, so thenN ′⊗RM →
N ⊗RM is an injection. �

Note: Projective or finitely generated are not local properties.

Proposition 13.7. LetM be an R-module. TFAE:

(1) M is projective and finitely generated.

(2) M is flat and finitely presented.

(3) M is finitely presented and locally free (Mm is free over Rm for all maximal ideal m).

Some remarks: M finitely presented means that there is an exact sequence Rn → Rm → M → 0,
but it is not true that the first map can be made injective. If R is noetherian, finitely generated is
equivalent to finitely presented. In the finitely presented case, projective = locally free = flat.
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Proof. 1 to 2: We know that projective implies flat. IfM is projective and finitely generated, then R
is finitely presented (this is hw).

2 to 3: If M is flat and finite presented, then M is projective. We know that when M is finitely
generated, projective implies locally free (we proved in a local ring, projective is same as free).

3 to 1: IfM is finitely presented thenM is finitely generated. We need to show thatM is projective.
Let N → N ′′ be a surjection of R-module. We want to show HomR(M,N) → HomR(M,N ′′) is
surjective. We check locally. So for every maximal ideal m, we want to check

HomR(M,N)⊗R Rm → HomR(M,N ′′)⊗R Rm

is surjective. In the case whereM is finitely presented and Rm is flat over R, we have an isomor-
phism

HomR(M,N)⊗R Rm → HomRm(M ⊗R Rm, N ⊗R Rm)

NowMm projective (it is free) implies
HomRm(Mm, Nm)→ HomRm(Mm, N

′′
m)

is surjective. So we are done. �

Remark: in the case whereM is finitely presented, localization commutes with Hom:

S−1HomR(M,N) ∼= HomS−1R(S
−1M,S−1N).

Stuff about sheaf and stalks. Skipping in notes.

14. Lecture 14: 2023.10.24

Theorem 14.1. Suppose Dfα is an open cover of SpecR. Then

0→ R→
∏
α

Rfα →
∏
α,β

Rfαfβ

is exact. In particular OSpecR(SpecR) = R. Similarly, ifM is an R-module, then same statement is true.

Proof. By quasi-compactness we assume this is a finite coverD(f1), · · · , D(fn). So (f1, · · · , fn) gen-
erates (1), and thus (fN1 , · · · , fNn ) generates 1 for any N ≥ 1.

The desired exactness is the following: given ri ∈ R such that ri/1 = rj/1 in Rfifj for all i, j, then
there exists a unique r ∈ R such that r/1 = ri/1 in Rfi for all i.

Uniqueness: say r ∈ R such that r/1 = 0 in Rfi for all i. Then there exists fNi such that fNi r = 0

for all i. Then r = r · 1 = r(
∑

i aif
N
i ) = 0.

Existence: Suppose hi/fNi ∈ Ri (can assume the exponent is the same since there are finitely many
of them) and hi/fNi whose images in Rfifj are equal, i.e.

(fifj)
mijfNj hi = (fifj)

mijfNi hj

ChooseM ≥ mij +N for all ij, then

fMj fM−N
i hi = fMi fM−N

j hj .

Let Hi = fM−N
i hi. Then

fMj Hi = fMi Hj
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We have 1 =
∑

i aif
M
i , so

fMj
∑
i

aiHi =
∑
i

aif
m
j Hi =

∑
i

aif
M
i Hj = Hj

so r =
∑

i aiHi has image Hj/f
M
j = hi/f

N
j in all Rfi . �

Definition 14.2. A Zariski local property of R or an R-module M is a property inherited by lo-
calizations, and holds for R (or M) if and only if there exists f1, · · · , fn that generates 1 and the
property holds for all Rfi .

Proposition 14.3. SupposeM is an R-module, and f1, · · · , fn generates 1. TFAE:

(1) M = 0

(2) Mf1 = 0 for all i

Proof. Mfi = 0 for all i means that for all m ∈ M , there exists N such that fNi m = 0. Then
m = 1 ·m =

∑
i aif

N
i m = 0. �

Proposition 14.4. Let R,M, fi be as above. ThenM is finitely generated (resp. finitely presented) ifMfi
are finitely generated (resp. finitely presented).

Proof. Localization is exact (preserves surjection, etc.) so the forward direction is obvious.

AssumeMfi is finitely generated for all fi. Since there are finitelymanyMfi ’s, there existsm1, · · · ,mk ∈
M such that the images of mi in Mfi generate Mfi . We claim these elements generate M . Let
Rk →M be the map and let Q be the cokernel, so we get

Rk →M → Q→ 0

Localizing we get
Rkfi →Mfi → Qfi → 0

So Qfi = 0 for all i, which implies Q = 0.

Assume Mfi is finitely presented for all fi. So by the previous proof M is finitely generated. Let
K be the kernel of the surjection Rk → M → 0. We want to show that K is finitely generated. By
the previous paragraph we can check Kfi is finitely generated. This is true by Schaneul’s lemma
in homework, since 0→ Kfi → Rrfi →Mfi → 0 are exact sequences. �

We change topic to integral homomorphisms. In number theory, this is relevant to algebraic inte-
gers. In algebraic geometry, this is connected to studying varieties by projecting onto linear spaces.

Definition 14.5. Let T be an R-algebra. Let R be the image of R in T . An element t ∈ T is integral
over R is there exists a monic polynomial p(x) ∈ R[x] such that p(t) = 0.

Proposition 14.6. Keep the notation above. TFAE:

(1) t is integral over R

(2) R[t] is a finitely generated R-module
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(3) there exists a R-subalgebra T0 of T containing R and t which is a finitely generated R-module (or
R-module, same thing)

(4) there exists an R[t]-module M which is finitely generated as an R-module and is a faithful R[t]-
module, i.e. if αm = 0 for allm then α = 0.

Remark: if p(x) is monic, then R[x]/p(x) is a free R-module with basis 1, x, · · · , xd−1 where d =
deg p.

Proof. 1 to 2 is obvious. 2 to 3: take T0 = R[t]. 3 to 4: takeM = T0. It contains R[t] and has 1, so it
is faithful as an R[t]-module.

4 to 1: look multiplication by t: M t−→ M . Then there exists monic p(x) such that p(t)M = 0. This
is true becuase: Suppose m1, · · · ,mk generate M , and suppose tmi =

∑
j qijmj . Take p(x) to be

det(x− (qij)). Now faithfulness ofM implies p(t) = 0. �

Corollary 14.7. Notation as before. Then t1, · · · , tn all integral over R if and only if R[t1, · · · , tn] is a
finitely generated R-module.

Proof. For the forward direction, use induction on n. The base case n = 1 is the equivalence 1
and 2 in the previous proposition. For the inductive step, assume R[t1, · · · , tn−1] is generated by
α1, · · · , αd overR. If tn is integral overR, then it is integral overR[t1, · · · , tn−1], soR[t1, · · · , tn−1, tn]

is a finitely generated R[t1, · · · , tn−1], say by β1, · · · , βk. Then {αiβj} generates R[t1, · · · , tn] over
R. �

Corollary 14.8. Integral elements of T form a subring of T containing R, and hence an R-algebra.

Definition 14.9.

(1) Integral elements of T is called the integral closure of R in T .

(2) If f : R→ T is injective and T is integral over R, then T is called an integral extension.

(3) Say R is integrally closed in T if its integral closure is R.

(4) If R is a domain, say R is integrally closed if it integrally closed in Frac(R).

Lemma 14.10. Let f : R → T1 and g : T1 → T2. If T1 is integral over R and T2 is integral over T1, then
T2 is integral over R via g ◦ f .

Proof. Given t ∈ T2, there exists a monic polynomial p(x) ∈ T1[x] such that p(t) = 0. Write

p(x) = xn + an−1x
n−1 + · · ·+ a0

where ai ∈ T1. NowR[a0, · · · , an−1] ⊂ T1 is a finitely generatedR-module since ai are integral over
R, and R[a0, · · · , an−1][t] is a finitely generated R[a0, · · · , an−1]-module. Then R[a0, · · · , an−1][t] is
a finitely generated R-module, so t is integral over R. �

Corollary 14.11. The integral closure of R in T is integrally closed in T .
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Example 14.1.

(1) Let R ⊂ R[x]. The element x is not integral over R.

(2) If R is a UFD, then R is integrally closed. Proof: given r/s ∈ Frac(R) where r 6= 0 and
gcd(r, s) = 1, if p(r/s) = 0 for monic p ∈ R[x], then

rn + an−1sr
n−1 + · · ·+ ans

n = 0

This implies s divides r, so s is a unit in R.

15. Lecture 15: 2023.10.26

Example 15.1.

(1) If R is a field and F is an extension, then F is integral over R if and only if F is algebraic
over R.

(2) The integral closure ofZ inQ(i) isZ[i], but the integral closure ofZ inQ(
√
−3) isZ[1+

√
−3

2 ].
In general for d squarefree, the integral closure of Z inQ(

√
d) is{

Z[
√
d], d 6= 1 mod 4

Z[1+
√
d

2 ], d = 1 mod 4
.

(3) Let k be a field. Then y2 − x3 is irreducible in k[x, y] because it is monic and primitive.
(Factors only if x3 is a square, which it is not). This means k[x, y]/(y2 − x3) is a domain. It
is not integrally closed. Consider y/x which is not in R. We have

(y/x)2 = y2/x2 = x3/x2 = x ∈ R
So y/x satisfies t2 − x = 0, hence integral. In fact, there is an inclusion R ↪→ k[t] by setting
t2 = x and t3 = t2 · t = x(y/x) = y. The image of R is then k[t2, t3]. This is connected to
the fact that y2 = x3 is not a “smooth curve”.

Proposition 15.1. Let T be anR-algebra. Let S be a multiplicative subset ofR. The image of S in T is still
a multiplicative set, which we still call S. Then

(1) for t ∈ T and s ∈ S, t/s ∈ S−1T is integral over S−1R if and only if there exists some v ∈ S such
that vt is integral over R.

(2) if T is integral over R, then S−1T is integral over S−1R.

(3) the integral closure of S−1R in S−1T is the integral closure of R in T localized by S.

“Taking integral closure is compatible with localization, and localization preserves integrality.”
Also, 1 trivially implies 2 and 3.

Proof. We prove 1. Let t/s ∈ S−1T . If vt is integral over R, then
(vt)n + · · ·+ a1(vt) + a0 = 0

Multiplying by (vs)−n, we get
(t/s)n + · · ·+ a0(vs)

−n = 0.

This is a monic polynomial with coefficients in S−1R, so t/s is integral over S−1R.
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Conversely, suppose t/s is integral over S−1R. Then

(t/s)n + (bn−1/wn−1)(t/s)
n−1 + · · ·+ b0/w0 = 0

Multiply through by snw0 · · ·wn−1, we see that

tn + sb′1t
n−1 + · · ·+ snb′0 = 0

in S−1T (not in T !). But this means there exists some v ∈ S such that
v(tn + sb′1t

n−1 + · · ·+ snb′0) = 0

in T . Multiplying by vn−1 gives the desired equation. �

Proposition 15.2. If R is a domain, the following are equivalent:

(1) R is integrally closed

(2) for all prime ideals p, Rp is integrally closed

(3) for all maximal ideals m, Rm is integrally closed.

Being integrally closed is a local property.

Proof. Let R̃ be the integral closure of R in K, the field of fractions. Then R = R̃ if and only if for
all p prime, Rp = R̃p = R̃p, where the last equality is by the previous proposition. �

We consider situations of interest in number theory. Let R be a domain, K its field of fractions,
and F an extension ofK.

Lemma 15.3. If F/K is algebraic, then for all α ∈ F , there exists r ∈ R non-zero such that rα is integral
over R.

Proof. Clear denominators. �

Proposition 15.4. Let R be integrally closed. Let α ∈ F be algebraic over K. Then α is integral over R if
and only if the minimal polynomials of α actually lies in R[x].

Proof. Backwards is obvious. For the forward direction, first assume that K(α) is separable over
K, which means that if d = [K(α) : K], then there exists σ1, · · · , σd distinct embeddings of K(α)

intoK (i.e. the minimal polynomial of α has d distinct roots). Then the minimal polynomials of α
is

d∏
i=1

(x− σi(α)).

Thus the coefficients of this polynomials are symmetric functions in σi(α). Since α is integral over
R, there exists p(x) ∈ R[x] such that p(α) = 0. Applying σi, we get p(σi(α)) = 0 too. So σi(α) are
all integral, so the symmetric functions are also integral over R. Because R is integrally closed, the
coefficients are in R.

IfK(α) is not separable overK, then coefficients of
∏d
i=1(x−σi(α)) lies in some purely inseparable

extensions. Taking the product to some pN solves the problem. �
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Example 15.2. Let R = Z, K = Q, and F = Q(
√
d). If α = a+ b

√
d, then the minimal polynomial

of α is x2 − 2ax+ a2 − db2.

Proposition 15.5. Let R be integrally closed. Suppose F/K is a finite separable extension. Let R̃F be
the integral closure of R in F . Then there exists α1, · · · , αd ∈ F a basis of F over K such that R̃F ⊆
Rα1 + · · ·+Rαd. In other words, R̃F is contained in a finitely generated free R-submodule of F .

In particular, if R is noetherian, then R̃F is a finitely generated R-submodule of F .

Example 15.3. Let R = Z, K = Q. The ring of integers OF is a free Z-module of rank d = [F : Q].
(torsion free, Z is PID, so free).

Proof. If α ∈ F , multiplication by α is a linear map F → F , so it has a trace tr(α). Trace isK-linear,
and tr(1) = d. If the characteristic ofK doesn’t divide d then tr(1) 6= 0. The separability hypothesis
guarantees that tr is not identically zero, so the bilinear form

〈α, β〉 = tr(αβ)

is non-degenerate, so it identifies F with its dual asK-vector spaces.

Let σ1, · · · , σd be distinct embeddings F (α) → K, then tr(α) =
∑

i σi(α). In particular, if α is
integral overR, then tr(α) is integral overR and is also inK. SinceR is integrally closed, tr(α) ∈ R.

Now let β1, · · · , βd be a K-basis of F . After clearing denominators, we can assume β1, · · · , βd are
integral over R, i.e. in R̃F . Let α1, · · · , αd be the dual basis under the trace, i.e. tr(αiβj) = δij .

Suppose γ =
∑

i cjαj with cj ∈ K and γ is integral over R. Then

tr(γβi) = ci

Since γ, βi ∈ R̃F , we have γβi ∈ R̃F , so tr(γβi) ∈ R. This means γ ∈
∑

iRαi. �

We start the going up theorem.

Theorem 15.6 (Going up). SupposeR ⊂ S are rings, and S is integral overR. Let p be a prime ideal ofR.
The going up theorem says that there exists a prime ideal q of S such that q∩R = p. (i.e. SpecS → SpecR
is surjective.) Also, if q1, q2 are prime ideals of S, q1 ⊆ q2 and q1 ∩R = q2 ∩R, then q1 = q2.

Corollary 15.7. Suppose p1 ⊂ p2 are prime ideals in R, q is a prime ideal in S and q1 ∩ R = p1. Then
there exists a prime ideal q2 in S such that q2 ∩R = p2 and q1 ⊂ q2.

Proof. Applying going up to R/p1 ⊂ S/q1 and the prime ideals p2/p1. �

Lemma 15.8. Let R ⊂ S be domains and S is integral over R. Then R is a field if and only if S is a field.

Proof. Assume R is a field. Let s ∈ S be non-zero. The subring R[s] is a domain, and it is a finitely
generated R-module. Since R is a field, this is a finite dimensional vector space. A domain that is
finite dimensional vector space is a field, so R[s] is a field.
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Assume S is a field. Take r ∈ R non-zero. Then r−1 ∈ S is integral over R, so there is an equation

r−n + · · ·+ a0 = 0

with ai ∈ R. Multiplying by rn−1, we get that r−1 is a polynomial in r with R coefficients, so
r−1 ∈ R. �

Lemma 15.9. Let R ⊂ S be rings and S integral over R. Let q be a prime ideal in S and p = q ∩R. Then
p is a maximal ideal in R if and only if q is maximal in S.

Proof. Look at the induced map R/p → S/q which is injective since p = q ∩ R. These are both
domains, and R/p → S/q is an integral extension by just writing down the equation and mod p.
Then we are done by the previous lemma. �

16. Lecture 16: 2023.10.31

Lemma 16.1. Let R ⊂ S be rings and S integral over R. If q1, q2 are prime ideals of S, q1 ⊆ q2 and
q1 ∩R = q2 ∩R, then q1 = q2.

Proof. Let p = qi∩R be the same intersection. ThenR−p is a multiplicative subset of bothR and S.
Localization preserves inclusion and intersection of submodules, sowe haveRp ⊂ Sp = (R−p)−1S.
The local ring Rp has a unique maximal ideal pRp. Also,

qiSp ∩Rp = (qi ∩R)p = pp = pRp.

This means qiSp are maximal ideals in Sp by Lemma 15.9 and the fact that localization preserves
integrality. Now q1 ⊆ q2 implies q1Sp = q2Sp since they are maximal ideals. We also know that

(R− p) ∩ qi ⊆ (R ∩ qi) ∩ (R− p) = p ∩ (R− p) = ∅.

So q1Sp = q2Sp are prime ideals inSp that corresponds to both q1 and q2 under the bijection between
prime ideals in Sp and prime ideals in S that avoids R− p, so we must have q1 = q2. �

Proof of the going up theorem. Start withR,S an integral ring extension and p a prime ideal inR. As
before, we haveRp ⊆ Sp = (R− p)−1S which is still an integral extension. Choose a maximal ideal
m in Sp. Consider m ∩ Rp. Lemma 15.9 implies that this is a maximal ideal in Rp. The ring Rp is
local, so we must have

m ∩Rp = pRp.

Let q = i−1
S (m) where iS : S → Sp. We have the commutative diagram

Rp Sp

R S
j

jp

iR iS

So q ∩R = j−1(i−1
S (m)) = i−1

R j−1
p (m) = i−1

R (pRp) = p. �

What does the going up theorem mean?

(1) For an integral ring extension S over R, the affine scheme map SpecS → SpecR is surjec-
tive.
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(2) Suppose f : R → S is just an integral homomorphism and let I be the kernel of f . Then
R/I is a subring of S. Then f∗ : SpecS → SpecR factors as

SpecS → SpecR/I → SpecR

The first step is surjective and the second step is a closed immersion.

(3) If f : R → S an integral homomorphism, then f∗ is a closed map: if Z ⊂ SpecS is closed,
then f∗(Z) is closed in SpecR.

(4) If f : R → S an integral homomorphism and S is a finitely generated R-algebra (so by
integrality S is a finite Rmodule), then f∗ : SpecS → SpecR has finite fibers.

Geometrically, if g : X → Y is amap of affine algebraic sets over kwhich corresponds to a k-algebra
homomorphism f : A(Y )→ A(X), then f being integral implies that g is a closed map, and g has
finite fibers.

Dimension in rings.

Let R be any ring. A chain in R is a sequence of strictly increasing prime ideals
p0 ( p1 ( · · · ( pk

Note that the index starts at 0 and ends at k, and k is called the length of the chain.

Definition 16.2. The Krull dimension of a ringR is themaximal length of chains inR. It is denoted
by dimR.

The Krull dimension could be infinity, even in noetherian rings.

Example 16.1.

(1) If R is a domain then (0) is a prime ideal. Thus, dimR = 0 if and only if R is a field.

(2) If R is a PID that is not a field, then every non-zero prime ideal is maximal. So every
maximal chain looks like

(0) ( p

which has length 1. So the dimension of PIDs is 1.

(3) Let R = k[x, y] where k is algebraically closed. We proved in homework that the prime
ideals are (0), (f) for f irreducible, or m = (x− a, x− b). Therefore a maximal chain looks
like

(0) ( (f) ( m

Therefore dim k[x, y] = 2.

(4) In k[x1, · · · , xn], we have a chain
(0) ( (x1) ( (x1, x2) ( · · · ( (x1, · · · , xn)

Later we will prove that this is a maximal chain.

If follows from the going up theorem that

Corollary 16.3. If R ⊂ S is an integral extension, then dimR = dimS.
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Proof. Given a chain
p0 ( p1 ( · · · ( pk

in R, the going up theorem implies that it can be lifted to a chain

q0 ( q1 ( · · · ( qk

where qi ∩R = pi. Therefore dimS ≥ dimR. On the other hand, given a chain

q0 ( q1 ( · · · ( qk

in S, we can let pi = qi ∩R. The second state of going up implies qi 6= qi+1 for any i. Therefore we
get a chain

p0 ( p1 ( · · · ( pk

in R. So dimR ≥ dimS. Hence they are equal. �

There is also the going down theorem.

Theorem 16.4 (Going down). Let R ⊂ S be an integral extension. Assume also that R,S are domains
andR is integrally closed (in its field of fractions). Suppose p2 ⊂ p1 are prime ideals inR, and q1 is a prime
ideal in S such that q1∩R = p1. Then there exists a prime ideal q2 ∈ S such that q2 ⊂ q1 and q2∩R = p2.

We will not prove it.

Definition 16.5. If p is a prime ideal inR, the height of p is the maximal length of a chain that ends
at p. We denote it by ht p. The coheight of p is the maximal length of a chain that starts at p. This
is sometimes denoted by dim p.

We easily see that the height is dimRp, and the coheight is dimR/p. From the definitions, ht p +
coht p is the max length of chains that contain p. In particular,

ht p+ coht p = dimR.

If I is an arbitrary ideal in R, we define

ht I = min{ht p | I ⊂ p}

and
coht I = max{coht p | I ⊂ p}

The going up theorem says that if R ⊂ S is an integral extension, q ∈ SpecS and p = q ∩ S, then
ht q ≤ ht p and coht p = coht q.

We move on to the topic of Noether normalization theorem. We need some field theory first. Let
K/k be a field extension. We say elements α1, · · · , αn ∈ K are algebraically independent over k if
the evaluation map k[x1, · · · , xn]→ K is injective. This means k(x1, · · · , xn) embeds intoK.

Definition 16.6. A transcendence basis ofK/k is a set of algebraically independent elements

α1, · · · , αn ∈ K

such thatK is algebraic over k(α1, · · · , αn).



40 NOTES BY WENQI LI

Fact: these always exists if suitably defined (i.e. maybe you need infinitely many of them), and the
number of these is independent of the choice of α1, · · · , αn. Then n is the transcendence degree of
K/k.

Suppose R is a k-algebra that is also a domain. We then think of R as a subring of K, its field of
fractions, and K/k is an field extension. We say elements in R are algebraically independent over
k if they are when considered inK.

Theorem 16.7 (Noether normalization). Let k be a field and R = [x1, · · · , xN ]/p where p is a prime
ideal in k[x1, · · · , xN ] (i.e. R is a finitely generated domain over k). Then there exists α1, · · · , αd in R
which are algebraically independent over k such that R is an integral extension of the ring k[α1, · · · , αd].

Wewill only prove this if k is infinite (e.g. k is algebraically closed). In this case, αi are the images
of linear combinations of xi’s with coefficients in k. In fact,“almost all” linear combinations will
work.

What is a geometric interpretation of Noether normalization? Suppose k = k. A ring R as in the
theorem corresponds to X ⊂ AN

k , and there is a linear projection AN
k → Ad

k. This gives a map
X → Ad

k that is surjective with finite fibers. We say X is a “finite branch cover” ofAd
k.

As a special case, let f ∈ k[x, y] and X = V (f). After choosing coordinates correctly, X → A1
k is

a cover. For example, let X = V (xy − 1) be a hyperbola. If we just project to the x-axis then the
image doesn’t contain 0, so this is an incorrect way of projecting. In fact, if we look at

k[x] ↪→ k[x, y]/(xy − 1) = k[x, x−1]

then this is not an integral extension. However, projecting to almost all other lines will work (not
the y-axis).

17. Lecture 17: 2023.11.2

Proof of Noether Normalization. Assume R = k[α1, · · · , αN ] where α1, · · · , αN are generators (not
the final answers!). The proof is by induction onN the number of generators. The base caseN = 0
is trivial.

Assume now the statement is true for all k-algebras that can be generated byN−1 elements. Again
let R = k[α1, · · · , αN ]. If α1, · · · , αN are algebraically independent, then we are simply done. So
assumeα1, · · · , αN are not algebraically independent. We claim that there existsN−1 linear combi-
nations α′

i of αi’s such thatR = k[α′
1, · · · , α′

N−1, αN ], and αN is integral over k[α′
1, · · · , α′

N−1]. If so,
the inductive hypothesis implies there existsβ1, · · · , βd algebraically independent in k[α′

1, · · · , α′
N−1].

Then we have the tower of integral extensions
k[β1, · · · , βd] ⊂ k[α′

1, · · · , α′
N−1] ⊂ k[α′

1, · · · , α′
N−1][αN ]

which implies R is integral over k[β1, · · · , βd].

So now we prove the claim. Let P be a non-zero polynomial such that P (α1, · · · , αN ) = 0. Write

P =

D∑
ν=0

Pν

where Pν is the degree ν homogenous part of P , and PD 6= 0. Because k is infinite(!), there exists
λ1, · · · , λN ∈ k such that PD(λ1, · · · , λN ) 6= 0. This implies the polynomial P (λ1, · · · , λN−1, t)
in t is not identically 0. Therefore we may choose λN 6= 0 such that PD(λ1, · · · , λN ) 6= 0. Since
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PD is homogenous, we may assume λN = 1 by just dividing through. Set α′
i = αi − λiαN for

1 ≤ i ≤ N − 1. Then of course

k[α1, · · · , αN ] = k[α′
1, · · · , α′

N−1, αN ]

since αi = α′
i + λiαN . Plugging back in PD, we get

PD(α1, · · · , αN ) = PD(α
′
1 + λ1αN , · · · , α′

N−1 + λN−1αN , αN )

Themonomial ofαDN must bePD(λ1, · · · , λN−1, 1)α
D
N . The assumptionwas thatPD(λ1, · · · , λN−1, 1)

is non-zero in k, so after dividing by it we obtain a monic polynomial in αN of degree dwith coef-
ficients in k[α′

1, · · · , α′
N−1]. This shows αN is integral over k[α′

1, · · · , α′
N−1], and we are done. �

What happens if k is finite? We can still use induction, but instead of α′
i = αi − λiαN , we use

α′
i = αi + αDi

N for some large power. So the β’s won’t be linear combinations.

Corollary 17.1. LetK be a field extension over k which is a finitely generated k-algebra. ThenK is a finite
extension.

Proof. Apply Noether normalization. There exists a subring k[α1, · · · , αd] where αi’s are alge-
braically independent such that K is integral over k[α1, · · · , αd]. But by going up, k[α1, · · · , αd]
is a field since K is integral over it. Thus d = 0, so K is integral over k, or equivalently algebraic
over k. Now finite generatedness ofK impliesK is finite over k. �

Corollary 17.2. Let k be algebraically closed andK be a finitely generated extension over k. ThenK = k.

Proof. Follows trivially from the previous corollary. �

Corollary 17.3. Let k be algebraically closed and R be a finitely generated k-algebra. Let m be a maximal
ideal in R. Then the composition k → R→ R/m is an isomorphism.

Corollary 17.4 (Nullstellensatz). Let k be algebraically closed. If m is a maximal ideal in the polynomial
ring k[x1, · · · , xn], then m = (x1 − a1, · · · , xn − an) for some a1, · · · , an ∈ k.

Proof. Consider k → k[x1, · · · , xn]/m, which is an isomorphism. So for all i, there exists ai ∈ k such
that xi = ai mod m. So xi − ai ∈ m for all i, so m contains (x1 − a1, · · · , xn − an), but the latter is
obviously maximal (e.g. because it is the kernel of the evaluation map at (a1, · · · , an)). �

When k is not algebraically closed, let I ⊆ k[x1, · · · , xn] be any ideal. Then I is not the unit ideal if
and only if there exists a1, · · · , an ∈ k such that f(a1, · · · , an) = 0 for all f ∈ I .

Theorem 17.5 (Nullstellensatz). Let k be algebraically closed and let I be an ideal in k[x1, · · · , xn]. Then
f(a) = 0 for all a ∈ V (I) if and only if there exists N such that fN ∈ I (i.e. f ∈

√
I). Namely,

I(V (I)) =
√
I .

Proof. Suppose fN is not in I for any N . Consider the localization

k[x1, · · · , xn]f = k[x1, · · · , xn, 1/f ]
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which is a finitely generated k-algebra. Since fN /∈ I for allN , we know that If is not the unit ideal.
Choose a maximal idealM in k[x1, · · · , xn]f containing If . Now m = M ∩ k[x1, · · · , xn] contains I
and is a prime ideal. Now

k → k[x1, · · · , xn]/m ↪→ k[x1, · · · , xn]f/M ∼= k

where the last isomorphism is by the previous corollary. The ring k[x1, · · · , xn]/m is captures in
the sequence of injections that composes to an isomorphism, so it must also be k, which means m
is a maximal ideal. We then get m = (x1 − a1, · · · , xn − an) for some a1, · · · , an ∈ k. The fact that
I ⊂ m means (a1, · · · , an) is in V (I). We know that f /∈M, so f /∈ m, which means f(a) 6= 0. This
finishes the proof. �

Some related results:

(1) Finiteness of integral closure. Suppose R is a domain and K is its field of fractions. Let R̃
be the integral closure of R. In general, little can be said about R̃ even when R is noether-
ian. Akizuki showed that there exists R noetherian such that R̃ is not noetherian, and in
particular not a finitely generated R-module. But

Theorem 17.6 (Noether). Let R be a domain which is a finitely generated algebra over k. If K
is the field of fractions of R and L is a finite extension of K, then the integral closure R̃L in L is a
finitely generated R-module. In particular R̃ is a finitely generated R-module.

Geometrically, if k = k and X is an affine algebraic variety over k, then the coordinate
ring A(X) is a domain that is a finitely generated k-algebra. The integral closure Ã(X)

corresponds to another variety X̃ , and we have an integral morphism X̃ → X . This is
called the normalization. The map π : X̃ → X has finite fibers, and is also birational:
there is a non-empty open subset U ofX such that π−1(U)→ U is an isomorphism. As an
example, k[x, y]/(y2 − x3) is a cusp X = V (y2 − x3) in the plane, and it injects into k[t] by
mapping y to t3 and x to t2. This corresponds to the parametrization A1

k → X given by
t 7→ (t2, t3).

(2) Generalization of Noether normalization. Let k be a field andR be a domain that is finitely
generated over k. Suppose there exists a sequence of ideals

I0 ⊂ · · · ⊂ Ik ( R

Then there exists α1, · · · , αd ∈ R algebraically independent over k and a non-decreasing
sequence of integers 0 ≤ h0 ≤ hk such that R is integral over k[α1, · · · , αd] and for all i,
k[α1, · · · , αd] ∩ Ii = (α1, · · · , αhi).

What does this mean? In k[x1, · · · , xd], there is a standard filtration (x1) ( (x1, x2) ( · · · (
(x1, · · · , xd). This statement says in finitely generated domain over k this is somewhat true.

Corollary 17.7. dim k[x1, · · · , xn] = n. ht(x1, · · · , xi) = i, and coht(x1, · · · , xi) = n− i.

Proof. We know a chain of lenght n, so we just need to show the opposite. Given a chain of
prime ideals

p0 ( · · · ( pk,

we apply the above result, so we obtain an integral extension k[α1, · · · , αd] ⊂ k[x1, · · · , xn]
whereα1, · · · , αd are algebraically independent, and pi∩k[α1, · · · , αd] is equal to (α1, · · · , αhi).
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First of all d = n because α1, · · · , αd is a transcendence basis. Moreover, by going up, we
know that pi ∩ k[α1, · · · , αd] is not equal to pi+1 ∩ k[α1, · · · , αd]. This shows that the num-
bers hi are strictly increasing. The maximal possible value for hi is d = n, so we must have
k 6= n.

The statements about height and coheight of (x1, · · · , xi) follows from the the fact that
ht(x1, · · · , xi) + coht(x1, · · · , xi) ≤ dim k[x1, · · · , xn] = n.

�

Corollary 17.8. If R is a domain that is fintiely generated over a field k, then the dimension of R is equal to
the transcendence degree of its field of fractions. If p is a prime ideal in R, then ht p+ coht p = dimR.

Proof. Generalized version of Noether normalization and going down. �

Geometrically, R corresponds to some variety X . The prime ideal p corresponds to some closed
subvariety Z ⊂ X . The the corollary implies coht p = dimZ and ht p = dimR− dimZ.

18. Lecure 18: 2023.11.9

We start talking about the Picard group and the ideal class group of a ring R.

Definition 18.1. An invertibleR-moduleM is a finitely generatedR-module such that there exists
an R-moduleM ′ such thatM ⊗RM ′ ∼= R as R-modules.

We will show that ifM ′ exists then it is also finitely generated. IfM ′ exists, then it is unique up to
isomorphism. In fact,M ′ will be the dual ofM .

Theorem 18.2. M is invertible if and only ifM is finitely generated, projective, and for all prime ideals p,
Mp
∼= Rp.

We sayM is “locally free of rank 1”. This is the algebraic version of line bundles on SpecR. It is in
fact enough to consider all maximal ideals. There is a Zariski local criterion which is in the HW.

Proof. AssumeM is invertible. FixM ′ such thatM ⊗RM ′ ∼= R. First we show thatMp
∼= Rp for all

prime ideals p. The first step is to do this in the case where R is local and m is its maximal ideal.
Let k = R/m. We have

(M ⊗RM ′)⊗R k ∼= k

The left side is isomorphic to
(M ⊗R k)⊗k (M ′ ⊗R k).

So as k-vector spaces, (M ⊗R k)⊗k (M ′ ⊗R k) ∼= k. Considering the dimension, we obtain that
M/mM ∼=M ⊗R k ∼= k andM ′/mM ∼=M ′ ⊗R k ∼= k

So there exists m ∈ M that generatesM/mM . Using the assumption thatM is finitely generated,
we can use Nakayama’s lemma to conclude Rm =M , soM ∼= R/I where I is the annhilator ofm.
Let r ∈ I , so rM = 0. This implies r(M ⊗RM ′) = rR = 0, so r = 0. Hence I = 0 andM ∼= R.

In the general case, obesrve that M is invertible implies Mp is invertible over Rp. This is because
we can localize the isomorphismM ⊗RM ′ ∼= R. Now by the local case discussion, we getMp

∼= Rp

for all p.
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To proveM is projective, we need

Lemma 18.3. If M is invertible, then M is flat over R. In fact, M is faithfully flat: it is flat, and for all
R-modules N , N = 0 if and only ifM ⊗R N = 0.

Proof. We have thatMp is free, and hence flat over Rp. Flatness is a local property, soM is flat. If
M ⊗R N = 0, then 0 =M ′ ⊗RM ⊗R N ∼= N . �

Lemma 18.4. If M is invertible and M ⊗R M ′ ∼= R, then M ′ is also finitely generated, and therefore
invertible.

Proof. There exists m1, · · · ,mk ∈ M and m′
1, · · · ,m′

k ∈ M ′ such that
∑
mi ⊗ m′

i maps to 1 in R.
We claim that m′

1, · · · ,m′
k generate M ′. There is map Rk → M ′ defined by sending the basis to

m′
1, · · · ,m′

k. Let Q be the cokernel of this map. We have

Rk →M ′ → Q→ 0

Tensoring withM , we get
Mk ψ−→M ⊗RM ′ →M ⊗R Q→ 0

The image of the first map ψ contains
∑
mi ⊗m′

i, so it is surjective since it contains 1 if we pass to
the isomorphism to R. This impliesM ⊗RQ is zero, and faithfully flatness ofM impliesQ is zero.
Hence Rk →M ′ is a surjection andM is finitely generated. �

Lemma 18.5. IfM is invertible, thenM is in fact finitely presented.

Proof. Finitely generatedness gives an exact sequence
0→ K → Rn →M → 0

Let M ′ be such that M ⊗R M ′ ∼= R. We know that M ′ is also invertible, so it is faithfully flat.
Tensoring withM ′, we get

0→ K ⊗RM ′ → (M ′)n →M ⊗RM ′ → 0

We have that M ⊗R M ′ ∼= R, so in particular it is projective, and thus the exact sequence splits.
Hence

(M ′)n ∼= R⊕ (K ⊗RM ′)

This implies K ⊗R M ′ is finitely generated. Hence K ⊗R M ′ ⊗R M is also finitely generated, but
this is just isomorphic toK. �

These lemmas in summary says that M is finitely presented and locally free. A previous result
(Proposition 13.7) implies M is projective (in fact these condition is equivalent to projective and
finitely generated). This completes of the first half of the theorem.

Now we assumeM is finitely generated, projective, and locally free of rank 1. Again Proposition
13.7 implies M is finitely presented. We claim that M ′ = HomR(M,R) is an inverse. We always
have a natural map

M ⊗R HomR(M,R)→ R

by evaluation. We want to show this is an isomorphism. Isomorphism can be checked locally at
all prime ideals, so consider the localization

Mp ⊗Rp HomR(M,R)p → Rp
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Because M is finitely presented, we have HomR(M,R)p ∼= HomRp(Mp, Rp). (Localization com-
mutes with Homwhen the source is finitely presented.) After these identification,

Mp ⊗Rp HomRp(Mp, Rp)→ Rp

is the evaluation map, and it is an exercise to show it is an isomorphism. This finishes the proof of
the Theorem. �

Proposition 18.6. Pic(R) is an abelian group under tensor products.

Proof. Routine. �

As an example, if R is a noetherian UFD, then Pic(R) is trivial group. But this converse is not true.
In fact, a theorem is that if R is a noetherian domain, then R is a UFD if and only if Rp is a UFD for
all primes p and Pic(R) = 1.

Assume now R is a domain, andK is its field of fractions.

Definition 18.7. A fractional ideal of R is an R-submodule M of K such that there exists r ∈ R
non-zero such that rM ⊆ R.

If M is a finitely generated submodule of K, then M is a fractional ideal since we can clear the
denominators of the finitely many generators. If a fractional idealM is already in R, then it is an
ideal. If λ ∈ K×, we can define (λ) to be the principal fractional ideal Rλ ⊆ K. It is a principal
fractional ideal. IfM is a fractional ideal and rM ⊆ R, then rM is an ideal in R.

Lemma 18.8. ifM1,M2 are two fractional ideals, so areM1 +M2,M1 ∩M2,M1M2. So is
(M1 :M2) = {λ ∈ K,λM2 ⊆M1}.

Definition 18.9. R,K as above. AnR-submoduleM ofK is invertible if there exists anR-submodule
M ′ ofK such thatMM ′ = R.

Lemma 18.10. IfM is invertible, thenM is finitely generated, and hence a fractional ideal.

Proof. The equality MM ′ = R implies there exists a finite list αi ∈ M and βi ∈ M ′ such that
1 =

∑
i αiβi. We claim thatM is generated by αi’s. Takem ∈M . Then

m = 1 ·m =
∑
i

αi(βim).

Notice that βim ∈MM ′ = R, som is generated by αi’s. �

Lemma 18.11. IfM andM ′ are such thatMM ′ = R, thenM ′ = (R :M).

Proof. IfMM ′ = R, thenM ′ ⊆ (R : M) by definition. Conversely, we know thatM(R : M) ⊆ R.
Multiplying byM ′, we get R(R :M) = (R :M) ⊆M ′. �

Lemma 18.12. IfM1, · · · ,Mn are invertible, then so is M = M1 · · ·Mn. Conversely, if M is invertible,
then so are theMi’s.
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Proof. IfM is invertible, we can considerM−1(
∏
i 6=jMi). This is obviously the inverse ofMj . �

Let I be the set of all invertible fractional ideals. Then I is an abelian group undermultiplication of
fractional ideals. We have a group homomorphism K× → I sending λ to the principal fractional
ideal (λ). The kernel of this map is just R×.

Definition 18.13. The ideal class group Cl(R) is defined to be the cokernel of the mapK× → I.

19. Lecture 19: 2023.11.14

Theorem 19.1. For a domain R, we have Cl(R) ∼= Pic(R).

Proof. IfM is an invertible fractional ideal, we can consider it as anR-module. Wewant to show it is
an invertible R-module. We know it is finitely generated. So we need to show thatM is projective,
and locally free of rank 1.

There exists a fractional idealM ′ such thatMM ′ = R. Write 1 =
∑n

i=1mim
′
i where mi,m

′
i are in

M,M ′ but ultimately inK = Frac(R). We define
f : Rn →M

f(r1, · · · , rn) =
∑
i

rimi

In the reverse direction we have
g :M → Rn

g(m) = (mm′
1, · · · ,mm′

n)

Then easily f ◦ g is the identity onM , soM is a direct summand of Rn, hence projective.

We know that finitely generated and projective impliesM is locally free. We must show that it is
rank 1 at every prime ideal. We have

Mp ⊗Rp K
∼= Rdp ⊗Rp K

∼= Kd

ButMp ⊗Rp K is contained inK ⊗Rp K = K(0) = K. Thus d = 1.

Conversely, given an invertible R-moduleM , we have

M ⊗R K ∼= (M ⊗Rp)⊗Rp K
∼= Rp ⊗Rp K

∼= K

Also M injects into M ⊗R K ∼= K because it is torsion free. Thus, M is isomorphic (but not
canonically) to some R-submodule ofK. We know thatM is finitely generated, soM is now seen
to be a fractional ideal.

Lemma 19.2. If M1,M2 are two non-zero fractional ideals, then M1
∼= M2 as R-modules if and only if

there exists λ ∈ K× such that λM1 =M2. In fact, HomR(M1,M2) ∼= {λ ∈ K | λM1 ⊂M2}.

Proof. Let φ : M1 → M2 be an R-linear map. Choose α ∈ M1 non-zero. Then φ(α)/α is some
element in K. Observe that for any r ∈ R non-zero, then φ(rα)/(rα) = φ(α)/α. Let β be another
non-zero element. Then φ(β)/β = φ(α)/α. This is simply because β = (r/s)α for some non-zero
r, s ∈ R. This shows that if we let λ = φ(α)/α, then φ(α) is just multiplication by λ. �
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Lemma 19.3. IfM1,M2 are two fractional ideals which are invertible as R-modules, then

M1M2
∼=M1 ⊗RM2.

Proof. We have a natural mapM1 ⊗RM2 →M1M2. On pure tensors it ism1 ⊗m2 7→ m1m2. Thus
it is surjective. We want to show that it is injective. We check locally at every prime p.

We know that (M1M2)p is a non-zeroRp-module, becauseM1M2 is non-zeroR-module andM1M2

is torsion free, so it injects into (M1M2)p. On the other hand

(M1 ⊗RM2)p ∼= (M1)p ⊗Rp (M2)p ∼= Rp
∼= Rp

∼= Rp

So we obtain a surjection
Rp → (M1M2)p

by exactness of localization. Thus (M1M2)p is a quotient of Rp by some proper ideal I . If I 6= (0),
then (M1M2)p has I-torsion, but (M1M2)p ⊂ K is torsion free. Thus I = (0) and Rp

∼= (M1M2)p.
In particular (M1 ⊗RM2)p → (M1M2)p is injective. �

Corollary 19.4. IfM is a fractional ideal that is invertible as anR-module, thenM is an invertible fractional
ideal.

Proof. We know that there exists another invertible R-moduleM ′ such thatM ⊗RM ′ ∼= R. By the
discussion before the lemmas, we know thatM ′ can be viewed as a fractional ideal. Then the above
lemma impliesMM ′ ∼= M ⊗RM ′ ∼= R. As such, we must haveMM ′ = λR for some λ ∈ K. Now
M(λ−1M ′) = R, soM is an invertible fractional ideal. �

Note that in the corollary there is an ambiguity of a constant λ ∈ K×, so this establishes the iso-
morphism between Cl(R) and Pic(R) since we mod out by principal fractional ideals.

�

A brief digression.

Let R be a ring and M be an R-module. Recall that M is noetherian if any increasing chain of
submodules is eventually constant. This is equivalent to that every non-empty collection of sub-
modules has a maximal element. M is artinian if the reverse condition is true.

Definition 19.5. An R-moduleM is simple if it is non-zero and there is no non-zero proper sub-
module.

IfM is simple and m ∈ M non-zero, then Rm = M . HenceM ∼= R/I for some ideal I . But also
this saysR/I is simple, so any J containing I must be just I orR, so I is maximal andR/I is a field.

Definition 19.6. M is of finite length if it has a composition series

0 =M0 ⊆ · · · ⊆Mn =M

withMi/Mi−1 are all simple.
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This is a very special property. If a composition series exists, then the length of such composition
series is independent of the choice of the composition series. Such length is then defined to be the
length ofM . Also the quotientMi/Mi−1 are independent of the choice of the composition series,
up to reordering.

Now we turn to ideals in noetherian rings.

Theorem 19.7. If I is a proper radical ideal inR a noetherian ring, then I is an intersection of finitely prime
ideals. Let I = p1 ∩ · · · ∩ pn be a non-redundant intersection, then pi’s are unique up to order.

Proof. Let X be the set of proper radical ideals which are not a finite intersection of prime ideals.
Assume for contradiction thatX is non-empty. Choose amaximal element I inX which exists since
R is noetherian. First I is not prime, so there exists r, s ∈ R such that r, s /∈ I but rs ∈ I . Consider
the ideal I + (r). This is a proper ideal, because otherwise a+ tr = 1 and then sa+ trs = s ∈ I , a
contradiction. Also I+(r) strictly contains I . Likewise I+(s) have these same properties. However,
we claim that I = (I + (r)) ∩ (I + (s)). If x ∈ (I + (r)) ∩ (I + (s)), then

x = a1 + t1r = a2 + t2s

Then
x2 = (a1 + t1r)(a2 + t2r) = a1C + a2D + t1t2(rs) ∈ I

Since I is radical, we get that x ∈ I . Hence I = (I + (r)) ∩ (I + (s)). Hence

I =
√
I =

√
(I + (r)) ∩ (I + (s)) =

√
I + (r) ∩

√
I + (s).

Both
√
I + (r) and

√
I + (s) are proper radical ideals strictly containing I , so they are intersections

of finitely prime ideals. This implies I is also an intersection of finitely many prime ideals. This is
a contradiction.

For uniqueness, say
p1 ∩ · · · ∩ pn = q1 ∩ · · · ∩ qm

This is a subset of qi for all i, so
qi ∈ V (p1 ∩ · · · ∩ pn) = V (p1) ∪ · · · ∪ V (pn)

So there exists some j such that qi ⊂ pj . Similarly pj ⊂ ql for some l. But there is no redundancy,
so qi ⊆ pj ⊆ ql implies all three are equal. �

Corollary 19.8. If R is noetherian andX ⊂ SpecR closed, then there are finitely many irreducible subsets
Y1, · · · , Yn such that X = Y1 ∪ · · · ∪ Yn. Then Y ’s are unique is there is no redundancy.

We say that Y ’s are the irreducible components ofX . Geometrically ifX is a closed algebraic subset
of An

k , then there exists closed irreducible subset Y1, · · · , Yl such that X = Y1 ∪ · · · ∪ Yl. A typical
example: let f ∈ k[x1, · · · , xm] is a non-constant polynomial, then we can factor f = p1p2 · · · pl into
irreducible polynomials, and V (f) = V (p1) ∪ · · · ∪ V (pl).

Corollary 19.9. If R is noetherian, there are finitely many minimal (i.e. height zero) prime ideals. If√
0 = p1 ∩ · · · ∩ pn with no redundancy, then p1, · · · , pn are the minimal primes.

The case for non-radical ideals is the theory of primary decomposition. We will skip. We start a
discussion of artinian rings.
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Theorem 19.10. A ring R 6= 0 is artinian if and only if R is noetherian and dimR = 0 (i.e. every prime
ideal is maximal)

For example, a field is artinian, and a finite product of fields is artinian. IfR is a noetherian ring and
m a maximal ideal, then quotient R/mN is noetherian and has dimension 0 because every prime
ideal in R/mN corresponds to a prime ideal p containing mN and thus m. So R/mN has a unique
prime ideal that is maximal.

Proof.

Lemma 19.11. An artinian domain is a field.

Proof. Let R be an artinian domain. Let r ∈ R be non-zero. We have a decreasing sequence of
ideals

(r) ⊇ (r2) ⊇ · · ·
So there exists an n such that (rn+1) = (rn). So rn = crn+1 for some unit c, so 1 = cr since we are
in a domain. �

Lemma 19.12. If R is artinian, every prime ideal is maximal.

Proof. Let p be a prime ideal. Then R/p is an artinian domain, so it is a field, and so p is a maximal
ideal. �

Lemma 19.13. If R is artinian, then R has only finitely many maximal ideals

Proof. Let X be the collection of all ideals of the form m1 ∩ · · · ∩mk wheremi’s are maximal. X is
not empty since there is a maximal ideal, and the artnian condition gives a minimal element inX .
Say m1 ∩ · · · ∩ mk. We claim that any maximal ideal is some mi. Let n be a maximal ideal. Then
n ∩m1 ∩ · · · ∩mk is some element in X , so we have

n ∩m1 ∩ · · · ∩mk = m1 ∩ · · · ∩mk

This implies n contains m1 ∩ · · · ∩ mk. Then n contains some mi because it is prime (think about
V ’s), and so n = m1. �

Lemma 19.14. If R is artinian, the nilradical N =
√
0 is a nilpotent ideal, i.e. Nk = (0) for some k ≥ 0.

Proof. The decreasing chain N ⊇ N2 ⊇ · · · stabilizes, so Nk = Nk+1 = · · · . Let I = Nk, so
I2 = N2k = I . If I is not (0), letX be the collection of ideals J such that JI 6= 0. Note thatX is not
empty because I2 = I 6= (0). So X has a minimal element, say J0. Then there is some r ∈ J0 such
that rI 6= (0), and thus (r)I 6= (0). Hence J0 = (r) by minimality. But also (rI)I = rI2 = rI 6= 0,
so rI is also in X . This implies rI = (r) by minimality again. So there exists some s ∈ I such that
sr = r. Replacing r by sr, we obtain that snr = r for all n > 0. Since I = Nk ⊂

√
0, we know that

for some n, sn = 0. so in fact r = 0. Hence J0 = 0 but that’s a contradiction. �

Nowwe are almost done proving an artinian R is noetherian. We know that
√
0 is the intersection

of all prime ideals, and when R is artinian we showed that this is the same as the intersection of
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all maximal ideals, and there are only finitely many. So let
√
0 = m1 ∩ · · · ∩ mk. We have that for

some N , √
0
N

= (0) = (m1 ∩ · · · ∩mk)
N ⊇ mN

1 · · ·mN
k .

Thus mN
1 · · ·mN

k = 0.

Let I be an ideal of the form ma1
1 · · ·m

ak
k . Then I is an artinian R-module. Consider I/miI . It is

an artinian R-module, but also an artinian R/mi-module, which is a vector space. Being artinian
implies I/miI is finite dimensional. So I/miI has a composition series.

Consider the filtration by ideals
R ⊇ m1 ⊇ · · · ⊇ mN · · ·mN = 0

and call them I0, · · · , (0), and each In/In+1 has a composition series. This implies R has a compo-
sition series, which implies R is noetherian.

Now we prove the converse. Assume R is noetherian and dimR = 0. In a noetherian ring, every
radical ideal is an intersection of finitely many prime ideals. So let

√
0 = m1 ∩ · · · ∩ mk where each

is maximal because we assume dimR = 0. Every ideal contains a power of its radical, so we have
(0) ⊇ (m1 ∩ · · · ∩mk)

N ⊇ mN · · ·mN .

Doing the composition series proof again to see that R has a composition series, and thus artinian.
�

20. Lecture 20: 2023.11.16

Corollary 20.1. Let R be a noetherian local ring with maximal ideal m. Then either mn 6= mn+1 for any n,
or R is artinian.

Proof. If mn 6= mn+1 for any n then clearly R is not artinian. Otherwise, mn = m ·mn. The ideal mn

is a finitely generated R-module, so Nakayama’s lemma implies mn = 0. Let p be any prime ideal,
then p contains

√
0 which contains m because mn = 0, so p = m. �

Theorem 20.2. IfR is any artinian ring, thenR is a productR1× · · ·×Rk whereRi’s are artin local. The
product is unique up to order and isomorphism.

We turn to Dedekind domains. We keep the basic assumption that R is noetherian domain with
dimension 1. In this case, the dimension assumption is equivalent to saying that every non-zero
prime ideal is maximal.

Theorem 20.3. Let R be as above. Assume R is local, with m its maximal ideal, k the residue field, and let
K be its field of fractions. Then the following are equivalent:

(1) R is integrally closed

(2) m is principal

(3) dimm/m2 = 1

(4) there exists some t ∈ R such that if I 6= (0) is an ideal, then I = (tk)

(5) every non-zero ideal in R is mk for some k.
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Definition 20.4. IfR satisfies any (all) conditions in Theorem 20.3, we sayR is a discrete valuation
ring (DVR). t is called a local uniformizing parameter (uniformizer).

Proof of Theorem 20.3. First, some remarks: if I 6= (0) is an ideal in R, then
√
I is the intersection of

all prime (hence maximal, by dimR = 1) ideals containing it, but there is only one maximal ideal,
so
√
I = m. Also mn 6= mn+1 for any n since otherwise R is artinian and has dimension 0.

We first show 1 implies 2. Choose r ∈ m non-zero, then
√
(r) = m. Hence there exists some

mn ⊆ (r). By taking the smallest we can assume mn−1 ( (r). So choose s ∈ mn−1 − (r). Let
t = r/s ∈ K× (s 6= 0 since 0 ∈ (r)). Then rt−1 = s is not in (r), so t−1 is not in the ring R. Now
consider t−1m. We have

t−1m =
s

r
m ⊂ 1

r
mn−1m =

1

r
m ⊂ 1

r
(r) ⊂ R

Therefore t−1m is an actual ideal ofR. We claim that t−1m is not contained inm, because otherwise
t−1m ⊂ m is finitely generated, so t−1 is integral over R. By assumption 1we have t−1 ∈ R, but we
showed t−1 /∈ R. Thus t−1m = R, so m = tR = (t).

Nowwe do 2 to 3. Ifm = (t), then tmodm2 spansm/m2. Also t /∈ m2 becausem/m2 = 0will make
dimR = 0. It is also clear that 3 implies 2. Take some basis vector of m/m2 and lift to some t ∈ m.
Nakayama’s lemma implies m = (t).

Next we show that 2 if and only if 4. Clearly 4 implies 2. Assume m = (t) is principal. Let I be a
non-zero proper ideal. We claim that there exists n such that I ⊂ mn but not in mn+1. If not, then
I ⊆ mk+1 for all k. We know that there is some k such that mk ⊂ I because

√
I = m, but then

mk ⊂ mk+1 ⊂ mk, which implies mk = mk+1 which we know is not the case.

So we can choose some s ∈ I − mn+1 but in mn = (tn). So let s = atn for some a ∈ R. The choice
s /∈ mn+1 means that a /∈ m. But R is local so a is a unit. Thus (s) = (tn) ⊆ I ⊂ mn = (tn), so
I = (tn), as desired.

We want to show 4 if and only if 5. 4 implies 5 is obvious. Assume 5. Choose t ∈ m − m2 which
is non-empty. Then (t) = mk by assumption 5. We must have k < 2 and so k = 1, which means
m = (t). So 2 is true and so 4 is true.

It remains to show any of 2 − 5 implies 1. Assume 4, then R is a PID and hence a UFD, which is
integrally closed. �

For a DVR R, we can define a function v : R − {0} → Z≥0 by v(r) = k where (r) = (tk) where t
is the uniformizer (m = (t)). It is easy to see that v(rs) = v(r) + v(s), v(t) = 1, and v(a) = 0 if
and only if a is a unit in R. This extends to a function v : K× → Z by v(r/s) = v(r) − v(s). By
construction v is a surjectionK× → Z. This is the discrete valuation.

Some properties:

(1) v(α) ≥ 0 if and only if α ∈ R− {0}, and v(α) > 0 if and only if α ∈ m− {0}.

(2) If α + β 6= 0, then v(α + β) ≥ min{v(α), v(β)}. This is seen by writing α, β in terms of the
uniformizer t.
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Example 20.1. Let R = Z(p). It is a local, noetherian, dimension 1. For α ∈ K×, write α = pkβ
where β = r/s and r, s are not divisible by p. Then v(α) = k.

Example 20.2. Let R = k[x](x−a). The field of fraction is k(x), the field of rational functions. Any
such function h can be written as

(x− a)k f
g

Then v(h) = k. This measures the zero/pole of h at a.

The above is the local picture. Globally, we have

Theorem 20.5. Let R be a noetherian domain that is not a field. Then the following are equivalent:

(1) dimR = 1 and R is integrally closed

(2) for all non-zero prime ideals p, Rp is a PID

(3) Given a prime ideal p, there exists a t ∈ R such that every ideal in Rp is (tk) for some k

Definition 20.6. IfR satisfies any (all) conditions in Theorem 20.5, we sayR is a Dedekind domain.

Proof. 3 to 2 is obvious. 1 implies 2 becauseRp is integrally closed with dimension 1 by property of
localization, so 2 is true by the previous theorem. 1 implies 3 is also by the previous theorem and
that dimRp = 1.

It remains to prove 2 implies 1. We claim that dimR = 1. Let p be a prime ideal in R that is non-
zero. It is then contained in some maximal ideal m. By assumption 2 we know that Rm is a PID
that is local, so it contains a unique non-zero prime idealmRm. Using the correspondence of prime
ideals, we see that p must be m. So every non-zero prime ideal is maximal, and hence dimR = 1.
Also, R is integrally closed because being integrally closed is a local property. �

21. Lecture 21: 2023.11.21

Theorem 21.1. Let R be a Dedekind domain. Then every non-zero fractional ideal of R is invertible. In
particular, if I is the set of non-zero fractional ideals, then I is a group under multiplication. If I is a non-zero
proper ideal, then I is a product of prime ideals, unique up to order.

If R is just a domain (not necessarily noetherian), then these conditions may not be true but they
are all equivalent, and they are equivalent to the condition of being a Dedekind domain.

Proof. Let I be a non-zero ideal of R. Since R is noetherian, I is finitely presented. For any prime
ideal p, the ideal Ip is a non-zero ideal inRp, which is a PID. Thus Ip is free of rank 1. The conditions
finitely presented + locally free of rank 1 implies I is invertible. Now ifM is a non-zero fractional
ideal, it is isomorphic as an R-module to an actual ideal, soM is an invertible R-module. Hence it
is also an invertible fractional ideal. This proves the first statement.

Suppose there exists a non-zero proper ideal I0 which is not a product of prime ideals. Since R is
noetherian, we may take I0 to be a maximal element with such property. I0 cannot be a maximal
ideal since that’s a one-term product of prime ideals. So there exists some maximal ideal m with
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I0 ⊂ m. Using the previous statement, m and I0 are invertible, so m−1I0 ⊂ R. But R ⊆ m−1 = (R :
m), so we get

I0 ⊂ m−1I0 ⊂ R.
Notice that m−1I0 6= R since otherwise I0 = m. Also m−1I0 6= I0 because otherwise I0 = mI0 (and
we can then localize at m, by Nakayama’s lemma I0 ⊂ (I0)m = 0, a contradiction). Then m−1I0 is a
proper ideal that strictly contains I0, so it is a product of primes. But then so is I0, a contradiction.
This proves the existence of prime ideal factorization.

For uniqueness, if
p1 · · · pk = q1 · · · ql

then q1 must be contained in pi for some i, but the dimension 1 property means this is an contain-
ment of maximal ideals, so they must be equal. These prime ideals are all invertible, so we can
cancel them from both sides. Keep going we get uniqueness. �

Corollary 21.2. Any fractional idealM 6= 0, R is uniquely (up to order) written as a product

pa11 · · · p
ak
k

where pi’s are distinct prime ideals, and ai ∈ Z−{0}.

Definition 21.3. If I, J are two non-zero ideals, say J |I if there exists an ideal J ′ such that I = JJ ′.

Lemma 21.4. Let R be a Dedekind domain. Then J |I if and only if I ⊂ J .

Proof. J |I implies I ⊂ J trivially, in any ring. If I ⊂ J , then J−1I ⊂ R is an ideal. So I =
J(J−1I). �

Proposition 21.5. Let R be a Dedekind domain. The following are equivalent:

(1) Cl(R) = 0

(2) R is a PID

(3) R is a UFD

Proof. The equivalence of 1 and 2 is just the definition of Cl(R). Any PID is UFD. So assume R is
a UFD. Let p be a non-zero prime ideal. Pick some r ∈ p non-zero. Since R is a UFD, we factor
r into irreducible, and one of the irreducible factors is in p. Thus we may assume r is irreducible.
The ideal (r) is then a prime ideal contained in p, and the dimension 1 condition says this is a
containment of maximal ideals, so p = (r). Hence all prime ideals are principal. Now if I is any
ideal in R, writing it as a product of prime ideals implies that it is principal. �

Let R be a Dedekind domain. Let p be a non-zero prime ideal. Then on K×, we have a valuation
vp : K

× → Z: if r ∈ Rp and rRp = (tk), then vp(r) = k. Also, if I is a non-zero fractional ideal, then
write

I = pa11 · · · p
ak
k

then we can define vp(I) = ai if p = pi. This is multiplicative, and it agrees with the valuation on
elements: (r) = pa11 · · · p

ak
k , then rRpi = (taii ) where ti is the uniformizer. Thus vp(r) = vp((r)).
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If R = Z and p = (p), then vp is the p-adic valuation. If R = A(Y ) where Y is an affine algebraic
curve (variety of dimension 1) and A(Y ) is integrally closed (Y is smooth), then the maximal
ideals of R corresponds to points on Y . If m corresponds to a point x, and t is a uniformizer at x
(i.e. mRm = (t)), then vx(f) measures the order of the zero (or minus the order of the pole) of f
at x.

Facts: LetM be a non-zero fractional ideal.

(1) vp(M) = 0 for all but finitely many p

(2) vp(M) = 0 for all p if and only ifM = R.

(3) vp(M) ≥ 0 for all p if and only ifM ⊆ R.

(4) vp(M1M2) = vp(M1) + vp(M2), and vp(M−1) = −vp(M).

(5) M1 ⊆M2 if and only if vp(M1) ≥ vp(M2) for all p.

(6) vp(M1 +M2) = min{vp(M1), vp(M2)}

(7) vp(M1 ∩M2) = max{vp(M1), vp(M2)}

To see (6), notice that M1 +M2 is the smallest fractional ideal containing M1 and M2. If M1 =
pa11 · · · p

ak
k and M2 = pb1 · · · pbk , then the smallest fractional ideal containing M1,M2 is pc11 · · · pck

where ci = min{ai, bi}. For (7) it is the reverse argument.

Extensions of Dedekind domains.

LetR be a Dedekind domain, andK its field of fractions. Let L be a finite separable extension over
K. Let R̃ be the integral closure of R in L. We have seen that R̃ is a finitely generated R-module,
so R̃ is also noetherian. An integral extension has the same dimension, so dim R̃ = 1. Thus R̃ is
also a Dedekind domain.

The Krull-Akizuki theorem says that this is true even if L is not separable.

Let n denote the degree of L/K. The basic issue to compare factorization of ideals in R and R̃. We
introduce some notation. Let p be a non-zero prime ideal in R. Then pR̃ is some ideal in R̃, so we
can factor

pR̃ = Pe1
1 · · ·P

er
r

Definition 21.6. In the above factorization, we say P lies over p if P appears in the factorization.

Lemma 21.7. The following are equivalent:

(1) P lies over p

(2) pR̃ ⊆ P

(3) p ⊆ P ∩R

(4) p = P ∩R
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Proof. 1, 2, 3 are trivially equivalent. If p ⊆ P ∩R, then since P ∩R is a non-zero prime ideal in R
which is maximal, they must be equal. �

Definition 21.8. In the situation
pR̃ = Pe1

1 · · ·P
er
r ,

we say ei is the ramification index of p at Pi. If ei = 1 we say p is unramified at Pi. Otherwise we
say p ramifies at Pi.

We have field extensions R/p ↪→ R̃/Pi. Let fi be the degree of this field extension. This is called
the residue field degree.

If pR̃ = Pe (has only one term in the factorzation) and f = 1, we say p is totally ramified. If
ei = fi = 1 for all i, we say p splits completely. If pR̃ = P, we say p is undecomposed (inert?).

In the geometric case, for simplicity let k be algebraically closed and let R = k[x], which is the
affine coordinate ring of A1

k. (One can replace A1
k by some irreducible smooth curve X , so A(X)

has dimension 1 and integrally closed.) Assume R ⊂ A(Y ) = R̃where Y is an irreducible smooth
curve. A(Y ) is also a Dedekind domain. We have the corresponding finite field extensionK(X) ⊂
K(Y ). In this case, the Nullstellensatz implies that R/p and R̃/P are always just k, so the residue
field degree are always 1. Prime ideals in A(X) corresponds to points mx, x ∈ X , and prime ideals
in A(Y ) corresponds to points my, y ∈ Y . The inclusion A(X) ↪→ A(Y ) corresponds to a map
π : Y → X , and my lies over mx if and only if π(y) = x.

Say
mxA(Y ) = me1

y1 · · ·m
ek
yk
.

Let t be the uniformizer at x. Then
π∗(t)A(Y )myi

= mei
yiA(Y )myi

This is analogous to “branching” on Riemann surfaces.

Theorem 21.9. In the situation
pR̃ = Pe1

1 · · ·P
er
r ,

we have
n =

∑
i

eifi.

Proof. Fix p. The localization R̃p is torsion-free, and hence a flat Rp-module. Rp is a local ring, so
R̃p is a free Rp-module. Thus R̃p = (Rp)

n by tensoring withK.

The quotient R̃/pR̃ is a vector space over R/p of dimension n by tensoring with K. On the other
hand,

R̃/pR̃ ∼= R̃/Pe1 × · · · × R̃/Per

So it suffices to show that R̃/Pei has dimension eifi over R/p. Consider

0 ⊂ Pei
i ⊂ Pei−1

i ⊂ · · · ⊂ R

Each Pa
i /P

a+1
i is a vector space over R/p and over R̃/Pi. We have

dimR/pP
a
i /P

a+1
i = fi dimR̃/Pi

Pa
i /P

a+1
i
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But Pa
i /P

a+1
i is one-dimensional (after localizing it is principal). Going through the filtration we

see that R̃/Pei has dimension eifi over R/p. �

As an example, R = Z and R̃ = Z[i]. The primes are 1 + i, p congruent to 3 mod 4, and π where
N(π) is prime congruent to 1mod 4. The prime 2 ramifies: (2) = (1 + i)2, here r = 1, e = 2, f = 1.
If p is 3 mod 4, then p remains prime in Z[i] is inert, but Z[i]/pZ[i] is Fp2 . If p is 1 mod 4, then
(p)Z[i] = (π)(π), so p splits completely.

22. Lecture 22: 2023.11.28

The last topic of the course will be dimension theorems and applications. First we discuss graded
rings. Recall that a graded ring is a direct sum (as abelian groups) R = ⊕n≥0Rn where RnRm ⊆
Rm+n. The piece R0 is a subring, and R+ = ⊕n>0Rn is an ideal. A graded module is similar:
M = ⊕n≥0Mn, where Mn are abelian group summands and not R-submodules. However, they
are R0-modules.

LetR be any ring and I an ideal. We define the blowup algebraBI(R) = R⊕I⊕I2⊕· · · = ⊕n≥0I
n

with the convention I0 = R. It is clear that InIm = Im+n, so this is a graded ring.

View I as an ideal in BI(R). It has degree zero, and IBI(R) = I ⊕ I2 ⊕ · · · living inside BI(R)
compatibly. We can then take the quotient and define

grI(R) = (R/I)⊕ (I/I2)⊕ · · ·
The multiplication gives (In/In+1)(Im/Im+1) ⊆ In+m/In+m+1, so this is a graded ring.

Similarly constructions can be done for modules, and we can obtain graded modules over BI(R)
and grI(R).

Example 22.1. Let R = k[x1, · · · , xn] and let m = (x1, · · · , xn). Then grm(R) is R itself again,
because R/m is k, and m/m2 = kx1 ⊕ · · · ⊕ kxn the degree 1 monomials, and so on.

Lemma 22.1. Let R = ⊕n≥0Rn be a graded ring.

(1) R is noetherian if and only if R0 is noetherian and R is a finitely generated R0-algebra.

(2) If R is noetherian andM = ⊕n≥0Mn is a finitely generated R-module, thenMn is a finitely gener-
ated R0-module for all n ≥ 0.

Proof. If R is noetherian then any quotient of it is noetherian, so R0 is noetherian. Also, R+ is an
ideal in R, so R+ is finitely generated, say by s1, · · · , sk. We can assume si are homogeneous of
degree di (if not, just take the homogenous components). Then any r ∈ Rn for n > 0 is of the form∑
risi with ri ∈ Rn−di by considering the degree. Inductively doing this (replace ri’s with sums

of smaller degree ones), we get that r is a sum of monomials in si’s with coefficients in R0. This
means that the map R0[s1, · · · , sr] → R is surjective since it is surjective in every degree, so R is
finitely generated over R0.

Conversely, suppose R0 is noetherian and R is finitely generated as a R0-algebra. Then R is a
quotient of R0[x1, · · · , xn], which is noetherian by the Hilbert basis theorem, so R is noetherian.

For the second statement, again let s1, · · · , sk be homogenous generators for R+ of degree di. Sim-
ilarly since M is finitely generated, let m1, · · · ,ml be homogenous generators of M of degree ej .
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ThenMn is generated by
{sa11 · · · s

ak
k mj |

∑
i

aidi + ej = n}

This is a finite set. �

Corollary 22.2. Let R be a ring and I an ideal. If R is noetherian, then BI(R) and grI(R) are also noe-
therian. And if BI(R) is noetherian, then R is noetherian.

Proof. If R is noetherian, then I is a finitely generated ideal generated by r1, · · · , rk. We have
BI(R)0 = R, and BI(R)+ is generated r1, · · · , rk as an ideal in BI(R). Then BI(R) is a finitely
generated R-algebra, so we are done by the lemma above.

If BI(R) is noetherian, then R = BI(R)/BI(R)+ is noetherian. �

Definition 22.3. Let M be an R-module. A decreasing filtration {Mn} in M is a sequence of
submodules M0 = M ⊇ M1 ⊇ · · · . We call M is a filtered R-module. (Note that we are not
in the graded setting now, so Mn are indeed submodules.) The associated graded module is
grM = ⊕n≥0Mn/Mn+1.

As an example, if R is a ring and I is an ideal, then there is a filtration R ⊇ I ⊇ I2 ⊇ · · · . Then
grR = grI(R). Similarly forM ⊇ IM ⊇ I2M ⊇ · · · .

As an aside, if A is an abelian group with a filtration A = A0 ⊇ A1 · · · , then we can define a
topology on A by defining {Ai} to be a base of open neighborhoods of 1. Under this topology,
addition is continuous, so A is made into a topological group. This topology is Hausdorff if and
only if ∩n≥0An = {0}. In the situation with R and {In}, this is called the I-adic topology on R.

Definition 22.4. We say that two filtrations {Mn} and {M ′
n} onM have bounded difference if and

only if there exists N1, N2 such that MN1+n ⊂ M ′
n and M ′

N2+n
⊂ Mn. One can take N1 = N2 by

taking the maximum of the two. This means that they define the same topology.

Definition 22.5. Let R be a ring, I an ideal, andM an R-module. {Mn} is an I-filtration if for any
n ≥ 0, IMn ⊆Mn+1, which is equivalent to that IkMn ⊆Mn+k for any n ≥ 0, k ≥ 1. An I-filtration
is stable if IMn =Mn+1 for all sufficiently large n.

For example,Mn = InM is a stable I-filtration.

Lemma 22.6. If {Mn} is a stable I-filtration, then {Mn} and {InM} have bounded difference.

Proof. By definition, InM = InM0 ⊆ Mn. On the other hand, since {Mn} is stable, we know
that there exist some N such that for n ≥ N , we have InMN = MN+n. But InMN ⊂ InM , so
InM ⊂MN+n. �

Theorem 22.7 (Artin-Rees Lemma). SupposeR is noetherian, I is an ideal, andM is a finitely generated
R-module. LetMn be a stable I-filtration onM . Then for any submoduleM ′ ofM , the induced filtration
{M ′ ∩Mn} is a stable I-filtration onM ′.

Corollary 22.8. With R, I,M,M ′ as above, we have (InM) ∩M ′ = In−N (INM ∩M ′).
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This means that the subspace topology onM ′ is the I-adic topology onM ′.

Proof of Artin-Rees Lemma. Define
M∗ = ⊕n≥0Mn.

IfMn is an I-filtration, thenM∗ is graded BI(R)-module because IkMn ⊆ Mn+k. The key lemma
is the following:

Lemma 22.9. If R is noetherian, I an ideal in R, and M a finitely generated R-module. Let {Mn} be an
I-filtration onM . Then {Mn} is a stable I-filtration if and only ifM∗ is a finitely generatedBI(R)-module.

Proof. Since R is noetherian, we know that BI(R) is noetherian. Consider the submodule

M∗
n =M0 ⊕M1 · · · ⊕Mn ⊕ IMn ⊕ I2Mn ⊕ · · ·

ofM∗ (because each IkMn is contained inMn+k). More efficiently,

M∗
n =

⊕
k 6=n

Mk ⊕
⊕
k≥n+1

Ik−nMn

Note that M∗
n are increasing, and ∪nM∗

n = M∗. Hence, M∗
N = M∗ for some N if and only if

Mk = Ik−NMN for all k ≥ N . Reindexing, this isMN+j = IjMN for all j. This is the definition of
being a stable I-filtration, so we indeed haveM∗

N = M∗ for some N . On the other hand, M∗
n is a

finitely generated BI(R)-module since it is generated byM0 ⊕ · · · ⊕Mn, each of which is a finitely
generated module over R. HenceM∗ is a finitely generated BI(R)-module if and only if {Mn} is a
stable I-filtration. �

Returning to the proof of Artin-Rees, we now know thatM∗ is a finitely generated BI(R)-module.
Consider the induced filtration {M ′ ∩Mn} onM ′. We have

I(M ′ ∩Mn) ⊂ IM ′ ∩ IMn ⊆M ′ ∩Mn+1

so {M ′ ∩Mn} is an I-filtration onM ′. Thus we can construction (M ′)∗ ⊆ M∗, which is a BI(R)-
submodule. We know that BI(R) is noetherian andM∗ is finitely generated, soM∗ is noetherian,
and any submodule is finitely generated. Hence (M ′)∗ is finitely generated over BI(R) and thus
{M ′ ∩Mn} is a stable I-filtration.

�

Corollary 22.10 (Krull). Let R be noetherian, I an ideal, andM a finitely generated R-module. Then
∞⋂
n=1

InM = {m ∈M | there exists r ∈ I, (1 + r)m = 0}.

In particular, this intersection is zero if I is contained in the Jacobson radical of R, or R is a domain, I is a
proper ideal, andM is torsion free.

Proof. LetM ′ = ∩∞n=1I
nM . Artin-Rees Lemma implies that

(IN+1M) ∩M ′ = I(INM ∩M ′)

but IkM ′ ⊇M ′ just because it is the intersection over all power. So we get

M ′ = IM ′
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By Nakayama’s lemma, this means there exists r ∈ I such that (1 + r)M ′ = 0. Hence

M ′ ⊆ {m ∈M | there exists r ∈ I, (1 + r)m = 0}.

For the other inclusion, we have
m = −rm = r2m = · · ·

som ∈ InM for all n. �

For example,M = R = C∞(R)0 be the germs of smooth function at 0 ∈ R. Let m be the maximal
ideal of germs vanishing at 0. The ring R is local, so the condition of Krull’s theorem is satisfied
except for noetherianness.

∞⋂
n=1

mnM

is the C∞ functions whose Taylor series at 0 is identically 0. We know that this is not zero, so the
Krull’s theorem fails for non-noetherian rings.

23. Lecture 23: 2023.11.30

We will discuss Hilbert functions.

Let k be a field. Let S = k[x0, · · · , xd], a graded ring. The dimension of the n-th piece is

dimk Sn =

(
n+ d

d

)
=

1

d!
(n+ d) · · · (n+ 1)

This is a polynomial in n of degree dwith leading coefficient 1
d! .

IfM is a finitely generated graded S-module, soM = ⊕n≥0Mn, we obtain a function

HM (n) = dimkMn.

WhenM = S/I where I is a homogenous ideal (so I corresponds to some subsetX of the projective
space), we write HX(n).

In general, let S = ⊕n≥0Sn be a graded noetherian ring. Let χ be a function on the set of isomor-
phism class of finitely generated S0-modules, to Z. For example, if S0 is a field, we can take χ to
be the dimension ofM . If S0 is artinian, then we can take χ to be the length ofM . Note that if k
is algebraically closed and S0 is a finitely generated k-algebra, then S0 is artinian, and in this case
the length is equal to the dimension.

We assume χ is additive over exact sequences: given an exact sequence

0→M ′ →M →M ′′ → 0

of finitely generated S0 modules, then χ(M) = χ(M ′) + χ(M ′′). Here are some consequences:

(1) If we have an exact sequence

0→M0 →M1 → · · · →Mn → 0

of finitely generated S0 modules, we get
n∑
i=0

(−1)iχ(Mi) = 0
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(2) Given a filtrationM0 =M ⊇ · · · ⊇Mn where eachMi/Mi+1 is a finitely generated module
over S0, then

χ(M/Mn) =

n−1∑
i=0

χ(Mi/Mi+1).

IfM is a finitely generated S-module, then eachMn is a finitely generated S0-module, and we can
define

Hχ,M (n) = χ(Mn).

This is called the Hilbert function.

There is another version. Let R be a noetherian ring (no grading), and letM be a R-module with
a filtration {Mn} (not graded pieces). We might be able to define

Pχ,M (n) = χ(M/Mn).

The point is that givenM , we associated grM = ⊕Mn/Mn+1, then

Pχ,M (n+ 1)− Pχ,M (n) = Hχ,grM (n)

once everything is defined.

Let R be a noetherian ring, m a maximal ideal, and k the residue field.

Definition 23.1. An ideal q is m-primary if √q = m.

In a noetherian ring, this is equivalent to that there exists some k such that mk ⊆ q ⊆ m, because
in a noetherian ring any ideal contains some power of its radical.

LetM be a finitely generated R-module and q a m-primary ideal. Let S = grqR = ⊕n≥0q
n/qn+1.

Then S0 = R/q is artinian because q contains some mk. If M is a finitely generated, we have
grqM = ⊕n≥0q

nM/qn+1M . This is a finitely generated S-module.

Letχ be the length function asS0-modules. IfMn = {qnM} or any stable q-filtration, thenMn/Mn+1

is a finitely generated S0-module, so it has finite length. This implies thatM/Mn+1 also has finite
length. We define

Hq,M = Hχ,M

andPq,M similarly. This depends on the filtration. Concretely,Hq,M (n) is the length of qnM/qn+1M .

We need some knowledge on numerical polynomials. Consider functions f : Z≥0 → Z. We say
f1 ∼ f2 if f1(n) = f2(n) for sufficiently large n. This is an equivalence relation. We identify
functions under this equivalence relation.

For example, a polynomial inZ[t]defines such a function. Sometimes a polynomial p inQ[t]defines
a function Z≥0 → Z. If so, we call p a numerical polynomial. If f ∼ p, then we also say f is
a numerical polynomial. Note that if p1, p2 are polynomials and p1 ∼ p2, then p1 = p2 because
their difference has infinitely many zeros. A numerical polynomial has a well-defined degree and
leading coefficient. We adapt the convention that deg 0 = −1.

If f is a function Z≥0 → Z, we define ∆f(n) = f(n+ 1)− f(n). Then f1 ∼ f2 implies ∆f1 ∼ ∆f2.
For example, ∆Pχ,M = Hχ,grM .
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Lemma 23.2. f is a numerical polynomial of degree d if and only if∆f is a numerical polynomial of degree
d− 1. A Z-basis for numerical polynomials inQ[t] is given by(

t

i

)
=

1

i!
t(t− 1) · · · (t− i+ 1).

In other words, any numerical polynomial inQ[t] is uniquely of the form
n∑
i=0

ai

(
t

i

)
where ai ∈ Z.

Proposition 23.3. Let R be a graded noetherian ring. Assume that R is generated by elements in degree 1
over R0, i.e. R = R0[r1, · · · , rk] with deg ri = 1. LetM be a finitely generated graded R-module, and χ
an additive function. Then Hχ,M is a numerical polynomial of degree k − 1.

Proof. We use induction on k. When k = 0, there is no generator, so R = R0. This means M
is a finitely generated R0-module. This means that Mn = {0} for all sufficiently large n. Hence
Hχ,M ∼ 0, whence degHχ,M = −1.

For the inductive step, assume the statement is true for R′ generated by at most k − 1 elements.
Consider R′ = R/rkR. We have an exact sequence

0→ K →M
rk−→M → L→ 0

where K,L are the kernel and cokernel of multiplication by rk. They are graded R′-modules. We
have exact sequences

0→ Kn →Mn
rk−→Mn+1 → Ln+1 → 0

We know that

∆Hχ,M (n) = χ(Mn+1)− χ(Mn) = χ(Ln+1)− χ(Kn) = Hχ,L(n+ 1)−Hχ,K(n)

By the induction hypothesis, this has degree at most k − 2, so Hχ,M has degree at most k − 1. �

Corollary 23.4. Let R be noetherian, m a maximal ideal, q a m-primary ideal, andM a finitely generated
R-module.

(1) If q is a generated by at most k elements, then Hq,M is a numerical polynomial of degree at most
k − 1.

(2) If Pq,M (n) is the length ofM/qn+1M , then Pq,M is a numerical polynomial of degree at most k.

(3) If {Mn} is a stable q-filtration, and we define P (n) to be the length of M/Mn+1, then P is a nu-
merical polynomial of degree at most k.

Proof. The graded ring grqR is generated in degree 1 as a R/q-algebra by images of generators of
q. �

Lemma 23.5. Same hypothesis as in the previous corollary. If 0 → M ′ → M → M ′′ → 0 is an exact
sequence ofR-modules, thenHq,M −Hq,M ′′ = F where F is a numerical polynomial and F andHq,M ′ have
the same degree and leading coefficient.
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Proof. We have an exact sequence
0→ qnM ∩M ′ → qnM → qnM ′′ → 0.

This gives

0→ qnM ∩M ′/qn+1M ∩M ′ → qnM/qn+1M → qnM ′′/qn+1M ′′ → 0.

Let
F (n) = `(qnM ∩M ′/qn+1M ∩M ′)

Then Hq,M −Hq,M ′′ = F . Observe that F = ∆P , where

P (n) = `(M ′/M ′ ∩ qn+1M ′)

Also as usual, Hq,M ′ = ∆Pq,M ′ where Pq,M ′(n) = `(M ′/qn+1M ′).

By Artin-Rees, the filtrations {qnM ∩M ′} and {qnM ′} have bounded difference. So there exists
some constants N such that

P (n−N) ≤ Pq,M ′(n) ≤ P (n+N).

This is only possible if P and Pq,M ′ have the same degree and leading coefficient. Thus so do ∆P
and∆Pq,M ′ , which is the desired result. �

We will proceed to the dimension theorem. Let R be a local noetherian ring, m its maximal ideal,
and k the residue field. There are three possible notions of dimension. The first one is the Krull
dimension dimR. The second one is d(R) = degHm,R + 1. The third one is δ(R), the minimal
possible number of generators of anm-primary ideal q. (Here, if (0) ism-primary, we set δ(R) = 0.)
The dimension theorem says that these are all the same.

In the dimension 0 case, R is artinian and m is nilpotent, so (0) is m-primary. Also, degHm,R = −1
if and only if it is the zero polynomials, which means mn/mn+1 = 0 for all large n. This happens
if and only if mn = 0 for all large n, which is equivalent to R being artinian. Hence we see that in
dimension 0 indeed these are all the same.

We will prove the dimension theorem next time. Now we make some side remarks. Let k be
algebraically closed, and let R = k[x0, · · · , kN ]/I where I is some homogeneous prime ideal. So
R is the projective coordinate ring of some projective variety X . We have the Hilbert polynomial
HX(n) = dimk Rn, which is a numerical polynomial. A fact is that if r is the dimension ofX (which
we haven’t defined for the moment), then degHX is r, and its leading coefficient is d/r! for some
positive integer d. This integer d is called the degree of X . We saw that the degree of Pn

k is 1.

An easy exercise is that if X = V (f) where f is homogenous irreducible of degree d, then the
degree of X is d. More generally (and harder), if X ⊂ PN

k with dimension r, then cutting X with
r hyperplanes will generally give a finite set of d points where d is the degree of X .

24. Lecture 24: 2023.12.5

Recall that we want to prove the dimension theorem for a local noetherian ring R. Let m be its
maximal ideal and k = R/m its residue field.

An immediate corollary of the dimension theorem is that the dimension of a local noetherian ring
is finite, as can be seen using the quantity δ(R), the minimal number of generators of a m-primary
ideal.

The easiest step is to show
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Lemma 24.1. d(R) ≤ δ(R).

Proof. Recall that d(R) = degHm,R + 1. Let q be a m-primary ideal generated by t elements where
t = δ(R). Wewant to prove that degHm,R+1 ≤ t. By Corollary 23.4, we know that degHq,R ≤ t−1.
So it is enough to observe thatHm,R andHq,R have the same degree. Since q ism-primary, we know
that there exists some k such that mk ⊆ q ⊆ m, and therefore

mkn ⊆ qn ⊆ mn.

We then have surjections
R/mkn → R/qn → R/mn

This means `(R/kn) ≥ `(R/qn) ≥ `(R/mn). By definition, this gives
Pm,R(kn) ≥ Pq,R(n) ≥ Pm,R(n)

For large values of n these are all polynomials, so such an inequality is only possible if they have
the same degree. Applying the difference operators gives the result. �

Let R = R/
√
0, and its maximal ideal is denoted by m. This is a reduced ring.

Lemma 24.2. With R as above, we have

(1) dimR = dimR

(2) δ(R) = δ(R)

(3) d(R) ≤ d(R)

Proof.

(1) Prime ideals in R corresponds to prime ideals in R that contains
√
0, but all prime ideals

contain
√
0. Hence there is a bijection between chains of prime ideals.

(2) If q is m-primary in R generated by t elements, then the image q in R is also m-primary
and generated by t elements. Thus δ(R) ≥ δ(R). Conversely, if q in R is m-primary and
generated by t elements r1, · · · , rt, we can lift the generators to r1, · · · , rt. There is certainly
a surjection √

(r1, · · · , rt)→
√
q = m

On the other hand,
√
0 ⊂

√
(r1, · · · , rt), so the kernel of the above map is exactly

√
0,

meaning that
√

(r1, · · · , rt) = m. Hence δ(R) = δ(R).

(3) The surjection m→ m gives surjections
mn/mn+1 → mn/mn+1

Hence Hm,R(n) ≥ Hm,R(n), so we have the degree inequality.

�

This allows us to reduce to the case where R is reduced. Here are some facts we will use

(1) IfR is any ring, I is an ideal, and p1, · · · , pk are prime ideal, then I is contained in the union
p1 ∪ · · · ∪ pk if and only if I is contained in one of them.
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(2) If R is a reduced noetherian ring, and p1, · · · , pk are the minimal primes of R (so their
intersection is 0), then the set of zero divisors of R is the union p1 ∪ · · · ∪ pk. If R is not
assumed to be reduced, then the minimal primes are contained in the set of zero divisors.
(More generally the zero divisors are union of associated prime, but we won’t use that.)

Lemma 24.3. Let q be a m-primary ideal in a local noetherian ring R. IfM is an R-module, and r ∈ R is
not a zero divisor onM (i.e. multiplication by r is an injection), then

degHq,M/rM ≤ degHq,M − 1.

In particular, if r is not a zero divisor, then d(R/rR) ≤ d(R)− 1.

Proof. We have a short exact sequence

0→M
r−→M →M/rM → 0

By Lemma 23.5, we know that Hq,M − Hq,M/rM = F where F has the same degree and leading
coefficient as Hq,M . In other words, Hq,M.rM has smaller degree than Hq,M . �

We know prove dimR ≤ d(R) for reducedR. We have seen that if any of the three dimensions is 0,
then all of them are 0. So we induct on the value of d = d(R) and the base case is known. Assume
that dimR′ ≤ d(R′) = d′ is true for all rings R′ with d′ < d. Let

p0 ⊂ · · · ⊂ pk

be a maximal (strictly increasing) chain of prime ideals inR. We can assume k ≥ 1, since we know
the case where k = 0. Then p1 is not a minimal prime. So there exists r ∈ p1 not a zero divisor
(otherwise p1 is contained in the union of minimal primes (here we used R reduced!), and thus in
one of the minimal primes, a contradiction.) Consider R′ = R/rR, and let p′i be the image of pi in
R′. We get a chain

p′1 ⊂ · · · ⊂ p′k
So dimR′ ≥ k− 1. On the other hand, Lemma 24.3 implies that d(R′) ≤ d(R)− 1. By the inductive
hypothesis, we know that dimR′ ≤ d(R′), so

k − 1 ≤ dimR′ ≤ d(R′) ≤ d(R)− 1

Thus k ≤ d(R), giving dimR ≤ d(R). Note that this already implies dimR <∞.

It remains to prove δ(R) ≤ dimR. The finiteness of dimR allows us to use induction of dimR = d.
The base case is again known. Assume the results for all d′ < d.

Lemma 24.4. If R is local noetherian, and r ∈ R is not a zero divisor or a unit, then

(1) δ(R) ≤ δ(R/rR) + 1

(2) dimR ≥ dim(R/rR) + 1

Note that this lemma implies the inductive step. If dimR > 0, then the maximal ideal m is not
minimal. By the same reasoning as before, there exists some r ∈ m that is not a zero divisor, and
clearly also not a unit. Then the lemma gives

dim(R/rR) ≤ dimR− 1 = d− 1

The induction hypothesis says δ(R/rR) ≤ dim(R/rR), and the lemma gives δ(R)− 1 ≤ δ(R/rR).
Putting them all together yields δ(R) ≤ d.
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Proof of Lemma 24.4.

(1) Suppose s1, · · · , st generate an m′-primary ideal in R′ = R/rR, where m′ is the image of
m. Lift si to ri ∈ R and consider (r, r1, · · · , rt). We claim that this is m-primary. This is
because we have equality

R/(r, r1, · · · , rt) = (R/rR)(s1, · · · , st)

and the right side is artinian, so (r, r1, · · · , rt) contains some power of m, and hence is m-
primary. Therefore δ(R) ≤ δ(R/rR) + 1.

(2) Start with a chain
p′1 ⊂ · · · ⊂ p′k

in R′ = R/rR. We can lift it to a chain
p1 ⊂ · · · ⊂ pk

that is also strictly increasing. We know that r ∈ p1 and r is not a zero divisor, so p1 cannot
be minimal. Thus there is some p0 that is strictly contained in p1, so dimR ≥ dimR′ + 1.

�

This finishes the proof of the dimension theorem.

Applications of the dimension theorem.

Corollary 24.5. Let R be a local noetherian ring, r ∈ R not a zero divisor or a unit. Then dim(R/rR) =
dimR− 1

Proof. By Lemma 24.4 and the dimension theorem, we have
dim(R/rR) ≤ dimR− 1 = δ(R)− 1 ≤ δ(R/rR) = dim(R/rR)

So all inequalities are equalities. �

Proposition 24.6. Let R be a noetherian ring but not necessarily local. Let r1, · · · , rk ∈ R. Let p be a
minimal prime in the set of ideals that contains (r1, · · · , rk) (so p corresponds to a minimal prime in the
quotient R/(r1, · · · , rk)). Then ht p ≤ k.

Proof. Recall that ht p is the length of the longest chain that ends at p, which is dimRp. The mini-
mality of pmeans that if we write √

(r1, · · · , rk) = p1 ∩ · · · ∩ pa

with no containment relations (a decomposition into irreducible components), then p is one of
them, say p1. An easy fact is that

√
S−1I = S−1

√
I , so here we have√

(r1, · · · , rk)Rp = (R− p)−1(p1 ∩ · · · ∩ pa) =
a⋂
i=1

piRp = pRp

Thus (r1, · · · , rk)Rp is pRp-primary in the local ring Rp. The dimension theorem then implies
k ≥ δ(Rp) = dimRp.

�
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Corollary 24.7 (Krull’s principal ideal theorem = Hauptidealsatz). Let R be a noetherian ring. Let
r ∈ R that is not a unit or a zero divisor. Let p be a minimal prime ideal in the set of ideals containing (r).
Then ht p = 1.

Proof. TheProposition implies ht p ≤ 1. If phas height 0, then p is aminimal prime, so p is contained
in the set of zero divisors. But r ∈ p is not a zero divisor, so p cannot have height 0. Thus p has
height 1. �

There are some other applications that we will not prove in class:

Theorem 24.8. Let R be noetherian. Then dimR[x] = dimR+ 1.

This sounds obvious but in fact fails when R is not noetherian. As a corollary, if k is a field then
the dimension of k[x1, · · · , xn] is n.

Theorem 24.9. If R is a noetherian domain, then the following are equivalent:

(1) R is a UFD

(2) every height 1 prime ideal is principal

(3) if m is maximal (equivalently, prime) then Rm is a UFD and PicR = 0

25. Lecture 25: 2023.12.7

Theorem25.1. Let k be a field, which is algebraically closed. Then dim k[x1, · · · , xn]m = n for anymaximal
ideal m.

Proof. Assume m = (x1, · · · , xn). Then grmk[x1, · · · , xn]m is ⊕k≥0m
k/mk+1. The piece mk/mk+1

is the homogenous degree k polynomials, which has dimension
(
n+k−1

k

)
. This is a polynomial of

degree n− 1 in k. So degHm,k[x1,··· ,xn]m = n− 1, and it follows that the dimension is n.

Any other maximal ideal is (x1 − a1, · · · , xn − an), which is the same. �

Corollary 25.2. dim k[x1, · · · , xn] = n.

Proof. For any ring, dimR ismax{dimRm} because the longest chain must end at a maximal ideal.
�

Corollary 25.3. LetA = A(X) forX an affine variety over k = k. Then dimA is equal to the transcendence
degree of A over k. More precisely, there is an integral extension of k[x1, · · · , xd] ↪→ A(X), so dimA = d.

From now on, R is a local noetherian ring with maximal ideal m and residue field k.

Lemma 25.4. dimR ≤ dimk m/m
2. This quantity is referred to as the embedding dimension of R.

Proof. Let e1, · · · , en be a k-basis of m/m2. Lift them to r1, · · · , rn. Then r1, · · · , rn generate mmod
m2, so Nakayama’s lemma implies m = (r1, · · · , rn). m is itself m-primary, so δ(R) ≤ n. The proof
is then finished by the dimension theorem. �
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Definition 25.5. We say R is a regular local ring if dimR = dimk m/m
2. If R is noetherian but not

necessarily local, we say R is regular if Rm is regular for all maximal ideals m.

It is a non-trivial fact that Rm is regular for all maximal ideals m if and only if Rp is regular for all
prime ideals p..

As an example, the polynomial ring k[x1, · · · , xn] is regular. If R is a local noetherian domain of
dimension 1, thenR is regular if and only ifR is a DVR. IfR is a noetherian domain of dimension 1,
thenR is regular if and only ifR is a Dedekind domain. We then see that in dimension 1, regularity
is equivalent to being integrally closed. In higher dimensions, regularity implies integrally closed.

Proposition 25.6. LetR be a local noetherian ring. ThenR is regular of dimension n if and only if grmR ∼=
k[x1, · · · , xn] as graded algebras.

Proof. Assume grmR ∼= k[x1, · · · , xn] as graded algebras. Then the graded piece of degree 1 ism/m2

but also just the linear polynomials, so it is of dimension n.

Assume R is regular of dimension n. We have a homomorphism k[x1, · · · , xn]→ grmR defined by
sending xi to ei where ei is a basis of m/m2. The piece mk/mk+1 is generated by monomials in ei’s,
so this map is a surjection.

Let f be in the kernel of this map. Then we would have a surjection k[x1, · · · , xn]/(f) → grmR,
so the dimension of k[x1, · · · , xn]/(f) is at least n. But if f is not 0, then it is not a zero divisor, so
dim k[x1, · · · , xn]/(f) ≤ n− 1, a contradiction. Hence f = 0 and we have an isomorphism. �

In higher dimensions, we have the so called Jacobian criterion.

Proposition 25.7. Suppose R is a regular local ring of dimension n. Let f1, · · · , fk ∈ m. Let S =
R/(f1, · · · , fk). Suppose dimS = d. Then S is regular if and only if the images of the fi’s in m/m2

span a subspace of dimension n− d. These images are typically denoted by df1, · · · , dfk.

For example, if k = 1 and f = f1 6= 0, then dimS = n − 1. S is regular if and only if f is not zero
in m/m2, i.e. f /∈ m2. In the case R = k[x1, · · · , xn]m, f ∈ m2 if and only if ∂f

∂xi
(0) = 0 for all i.

Proposition 25.8. A regular local ring R is a domain.

Proof. We know that grmR ∼= k[x1, · · · , xn] is a domain. Given f ∈ R not equal to 0, then there
exists a unique a such that f ∈ ma−ma+1 (because ∩mn = 0). Then we define in(f) ∈ ma/ma+1 to
be the image of f in ma/ma+1. We see that in(fg) = in(f) in(g) is non-zero for f, g non-zero, so fg
is non-zero. �

In fact, regular local rings are UFDs, but this is a hard theorem of Serre.

Finally we will talk about completions. Let A be an abelian group and A = A0 ⊃ A1 ⊃ · · · be a
sequence of subgroups. This defines a topology on A, where a sequence {xk} converges to some b
if and only if for any n, there exists N such that k ≥ N implies xk − b ∈ An. This is Hausdorff if
and only if ∩k≥0Ak = {0}. Cauchy sequences are defined similarly.
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The completion Â is a complete and Hausdorff space produced out of A. The construction is stan-
dard, namely the set of all Cauchy sequences in A modulo the equivalence relation {xn} ∼ {yn}
if {xn − yn} converges to 0. There is a group homomorphism A → Â sending a to the constant
sequence with dense image, and the kernel is ∩k≥0Ak.

Algebraically, for each k we have surjections A/Ak+1 → A/Ak. so we can take the inverse limit

lim←−A/Ak

Concretely this is the set of tuples (a0, a1, · · · ) such that the image of ak+1 in A/Ak is ak. There is a
natural map A→ lim←−A/Ak, with kernel ∩k≥0Ak. This identifies the completion with lim←−A/Ak.

Say 0 → A′ → A → A′′ → 0 is an exact sequence of abelian groups. Start with a decreasing
sequence of subgroups Ak ⊂ A. This induces a sequence A′′

k in A′′, and A′
k = Ak ∩ A′ in A′. With

these filtration we have an exact sequence

0→ Â′ → Â→ Â′′ → 0.

Note that for a fixed k, we have 0 → Ak → A, and the filtration induces a filtration on Ak. Then
Ã/Âk ∼= A/Ak.

The basic example in ring theory is the filtration {In} inRwhere I is an ideal. IfM is anR-module
then we can take {InM}. It is a basic fact that R̂ is a ring, and M̂ is a R̂-module.

Example 25.1. Let R = Z and I = (p). Then R̂ is usually denoted by Zp, the p-adic integers. Let
R = k[x1, · · · , xn] and I = m = (x1, · · · , xn), then R̂ = k[[x1, · · · , xn]] the formal power series.

Some properties:

(1) If R is noetherian, then R̂ is noetherian. The main point is that gr
Î
R̂ ∼= grIR, which is then

seen to be noetherian.

(2) If R is noetherian,M is finitely generated, then

0→M ′ →M →M ′′ → 0

is exact implies
0→ M̂ ′ → M̂ → M̂ ′′ → 0

is exact. The proof is to use Artin-Rees lemma to identify filtrations and apply the abelian
group fact.

(3) If R is noetherian, M is finitely generated, then M̂ = M ⊗R R̂. This is obvious when
M = Rn since both sides are R̂n. In general, we pick

0→ K → Rn →M → 0

whereK is finitely generated by noetherianness. Then

K ⊗R R̂→ R̂n →M ⊗R R̂→ 0

is exact, and on the other hand

0→ K̂ → R̂n → M̂ → 0
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is exact. There are natural vertical maps, and by diagram chase we get thatM ⊗R R̂→ M̂
is surjective for all finitely generated R-module, in particular this is true for K. Chasing
diagrams again gives the desired isomorphism.

(4) ForR noetherian, R̂ isR-flat, because flatness can be checked only against finitely generated
modules.

(5) Let m be a maximal ideal and let R̂ be the completion in the m-adic topology. Then R̂ is a
local ring, because for r ∈ m,

1

1 + r
= 1− r + r2 − · · ·

which converges in R̂. Thus 1 + r is a unit, which implies all things not in m are units.

(6) Assume R is local. Then dimR = dim R̂. R is regular if and only if R̂ is regular. If there
exists a field k in R mapping isomorphically to R/m, then R̂ is regular if and only if R̂ is
the power series k[[x1, · · · , xn]].

The Cohen structure theorem says that if R is local noetherian with maximal ideal m and
residue field k, andR is completewith respect to them-adic topology, andmost importantly
if R contains a subring which is a field, then R contains a subring isomorphic to k via
R→ R/m = k. This is called a coefficient field. Then R ∼= k[[x1, · · · , xn]]/I .

What does this mean? LetM be a smooth or complex manifold. Then locally they all look likeRn

orCn. In algebraic geometry, ifX is an affine variety, it has local rings A(X)m, but they don’t look
alike. If A(X)m is regular, then grmA(X)m and completions Â(X)m do look alike.
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