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1 Abelian Categories

Definition. We say that a category C is additive if it satisfies the following:

• For each X,Y ∈ C, HomC(X,Y ) has an abelian group stucture, and composition is bilinear.

• C has a zero object.

• C admits finite products and finite coproducts. (One implies the other)

Definition. We say that an additive category A is abelian if it satisfies:

• A has all kernels and cokernels.

• For every morphism f : X → Y in A, the map Coim(f)
∼−→ Im(f) is an isomorphism.

Here the image and coimage of a map f : X → Y are defined as

Im(f) = ker(Y → coker(f)), Coim(f) = coker(ker(f) → X),

and the map between them comes from the universal properties of kernel and cokernel applied
to the diagram

ker(f) X Y coker(f)

Coim(f) Im(f)

f

Example. For the category ModR of modules over a ring R, this property becomes exactly
the first isomorphism theorem, since for R-modules X,Y one has Coim(f) = X/ ker(f)
and the corresponding morphism is X/ ker(f)

∼−→ Im(f). Therefore, ModR is an abelian
category (all other properties are equally well known).

Remark. It is a well-known fact that all final limits can be recovered from the existence of an
initial object, products and kernels (and analogously for finite colimits). Therefore, an abelian
category admits all finite limits and colimits.

1.1 Complexes in abelian categories

Complexes can be defined in any additive category, but for the purposes of this talk we will
assume we always work over an abelian category A.

Definition. Let A be an abelian category. A (cochain) complex in A is a sequence

· · · → Xn−1 ∂n−1

−−−→ Xn ∂n

−→ Xn+1 → · · ·

where δi ◦ δi−1 = 0 for all i ∈ Z. The category of (cochain) complexes in A is denoted C(A),
with morphisms f : X• → Y • being commutative diagrams of morphisms f : Xn → Y n.
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Definition. We define the n-th cohomology of a complex X• to be the abelian group

Hn(X•) = ker(∂n)/Im(∂n−1).

This defines a functor Hn : C(A) → A. We say that a morphism f : X• → Y • is a quasi-
isomorphism if the induced maps in cohomology

Hn(f) : Hn(X•) → Hn(Y •)

are isomorphisms.

Definition. We say that a morphism f : X• → Y • is nullhomotopic if there exist maps hn :
Xn → Y n−1 such that f = hδX + δY h. We say that X• ∈ C(A) is nullhomotopic if idX is.

Definition. We define the homotopy category K(A) to be the category whose objects are the
same as C(A), and the morphisms are morphisms of complexes modulo homotopy.

Warning. In general, the homotopy category K(A) is not an abelian category. It has the
structure of a triangulated category.

Remark. A nullhomotopic complex is quasi-isomorphic to zero, but the converse is false. In
particular, taking cohomology induces functors Hn : K(A) → A.

2 Derived Categories

Definition. The derived category D(A) is a category equipped with a functor Q : C(A) → D(A)
such that Q sends quasi-isomorphisms to isomorphisms, and (D(A), Q) is initial for this property,
meaning that for any category B and functor Q′ : C(A) → B that sends quasi-isomorphism to
morphisms, Q′ factors uniquely through Q.

The standard way to explicitly construct the derived category D(A) is by localizing the homo-
topy category K(A) at the quasi-isomorphisms. We will skip the details of how the localization
works, but the idea is to define the full subcategory acyclic objects

N(A) = {X• ∈ K(A) | Hk(X•) ≃ 0 for all k},

and formally invert the morphisms X → Y that embed into a distinguished triangle

X → Y → Z → X[1]

with Z ∈ N(A). We denote this localization by K(A)/N(A), so this gives an explicit construction
of D(A).

Remark. Anything we have done for the category C(A) can be analogously defined for the cate-
gories C+(A), C−(A) and Cb(A) of bounded above, bounded below, and bounded (cochain) com-
plexes. For C∗(A) with ∗ = ∅,+,−, b, we denote by K∗(A), N∗(A) and D∗(A) ≃ K∗(A)/N∗(A)
the corresponding categories.

One interesting thing to note is that if I is a full additive subcategory of A that is cogenerating,
meaning that for each X ∈ A there is I ∈ I and a monomorphism 0 → X → I, then the functor
K+(I) → D+(A) is full and there is an equivalence D+(A) ≃ K+(I)/N+(A). In particular, if
A has enough injectives, the full subcategory IA of injective objects in A and N(I) has only the
zero object, so we get an equivalence of categories

K+(IA) ≃ D+(A)
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3 Derived Functors

Let F : A → B be a functor between abelian categories. Since nullhomotopy is a functorial
property, F induces a functor F : K(A) → K(B) on homotopy categories. We want to find
sufficient conditions for F to induce a functor on the derived categories.

Definition. Let F : A → B be a left exact functor of abelian categories. We say that a class I
of objects of A is F -injective if

• I is cogenerating.

• Given an exact sequence 0 → X1 → X2 → X3 → 0, if X1, X2 ∈ I, then X3 ∈ I, and the
sequence

0 → F (X1) → F (X2) → F (X2) → 0

is exact.

Example. If A has enough injective objects (i.e. the class of injective objects is cogen-
erating), then the class of injective objects of A is F -injective for any left-exact functor
F : A → B.

Theorem 1. If F : A → B is a left exact functor and there is an F -injective class I of objects
of A, then F induces a functor

RF : D+(A) → D+(B),

called the right derived functor of F . Assume A admits enough injectives; then the cohomology
of the complex RF (X) coincides with the classical i-th derived functors:

H i(RF (X)) ≃ RiF (X) := H i(F (I•)),

where I• is an injective resolution of X.

Theorem 2. Let F1 : A1 → A2 and F2 : A2 → A3 be two functors such that there is an
F1-injective class I1 of objects in A1 and an F2-injective class I2 of objects in A2 such that
F1(I1) ⊂ I2. Then I1 is (F2 ◦ F1)-injective and

R(F2 ◦ F1) ≃ RF2 ◦RF1

Remark. Everything in this section can be dualized so that if G : A → B is a right exact functor
and the category has enough projectives, G defines a left derived functor

LG : D−(A) → D−(B)

3.1 Application to sheaves

The category ShA(X) of sheaves of A-modules on a topological space X is an abelian category.
A continuous map f : X → Y induces pushforward and pullback functors

f∗ : ShA(X) → ShA(Y ), f∗ : ShA(Y ) → ShA(X),

3



defined as f∗F(U) = F(f−1(U)), and f∗ is given by the sheafification of the presheaf U 7→
lim−→f(U)⊆U ′ F(U ′). It is well known that the functor f∗ is left exact, while the functor f∗ is exact,
and they are adjoint to each other. Since f∗ is left exact, we can define the derived functor

Rf∗ : D
+(ShA(X)) → D+(ShA(Y ))

The pushforward commutes with compositions, i.e. (f ◦g)∗ = f∗ ◦g∗, and being the right adjoint
of an exact functor, it preserves injectives. Therefore one gets

R(f ◦ g)∗ ≃ R(f∗ ◦ g∗) ≃ Rf∗ ◦Rg∗

As a standard application, consider the final map σX : X → ∗. The category of sheaves on
∗ is equivalent to the category of A-modules, and via this identification, the pushforward map
σX,∗ : ShA(X) → ModA can be identified with the global sections map Γ(X,−). Note that
for any map f : X → Y we have σY ◦ f = σX , so the previous result gives us the following
isomorphisms in the derived categories (natural in F)

RΓ(Y,Rf∗F) ≃ RΓ(X,F)

Recall that the right derived functors of the global sections are the sheaf cohomology functors,
this is H i(X,F) := H iRΓ(X,F). Therefore, taking cohomology, one recovers the Leray spectral
sequence

Hp(Y,Rqf∗F) ⇒ Hp+q(X,F)

As a particular case, when f is a closed immersion, or when f is affine and F and we restrict to
quasi-coherent sheaves, the pushforward f∗ is exact, so Rjf∗ ≃ 0 for j > 0 and one has

H i(Y, f∗F) ≃ H i(X,F).
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