Latest on Poincare

A new 473-page paper by Gang Tian and my colleague John Morgan that gives a complete proof of the Poincare conjecture based upon the argument outlined by Grigori Perelman (which carries out the program of my other Columbia colleague Richard Hamilton) is now available as a preprint on the arXiv entitled Ricci Flow and the Poincare Conjecture. This paper is in the process of being refereed and should ultimately appear as a book in the monograph series that the Clay Math Institute publishes with the AMS.

Morgan and Tian just provide a proof of Poincare, not the full geometrization conjecture. Other sources for worked out details of Perelman’s argument are the notes by Kleiner and Lott, and the recent paper by Cao-Zhu that appeared in the Asian Journal of Mathematics. Cao-Zhu provide fewer details than Morgan-Tian, but do give a proof of geometrization. Until very recently the Cao-Zhu paper was only available in the paper version of the journal, for sale by International Press for $69.00. Yesterday the journal put the full paper on-line, and it’s available here.

Latest rumor I hear is that the Fields Medal committee has definitely chosen Perelman as a Fields medalist, with the appearance of these detailed proofs using his arguments clinching the deal. However it remains unclear whether he’ll show up in Madrid, or even actually accept the honor being offered him.

Update: There’s an article about this in this week’s Nature.

Update: The September issue of the Notices of the AMS has an excellent article by Allyn Jackson about this. Next week’s Science Times is supposed to have an article by Dennis Overbye.

Posted in Uncategorized | 106 Comments

Various and Sundry

Since it’s summer, lots of conferences going on:

The Institute in Princeton has its usual summer program designed to train graduate students and postdocs in string theory. The schedule and lecture notes are here.

On the opposite coast, with an opposite point of view about particle physics, there’s the SLAC Summer Institute, which is on LHC physics. The program and lecture notes are here. One of the organizers, JoAnne Hewett, has a posting about this at Cosmic Variance.

In Australia there’s a conference on the Mathematics of String Theory going on, with a satellite workshop next week in Adelaide.

Last weekend there was a conference entitled Under the Spell of Physics, in honor of ‘t Hooft’s 60th birthday. Many of the talks sound interesting; here’s the program, but unfortunately the talks are not online. From what I hear ‘t Hooft remains quite skeptical about string theory, Polyakov said that current ideas about how to apply string theory to nature are wrong, and the lack of progress in fundamental theory was a concern of many of the participants.

I’ve been thinking a lot about BRST recently, and happened to run across the Wikipedia entry for BRST Formalism. The entry had something I hadn’t seen before, a banner announcing that “This article or section may be confusing or unclear for some readers, and should be edited to rectify this”, and that the attention of an expert and a complete rewrite was needed. I have to say that I feel that way about most of the literature on BRST…

Soon to appear in the AMS Bulletin is an article by Sinai entitled Mathematicians and Physicists = Cats and Dogs?

The Cao-Zhu paper with a proof of Poincare/Geometrization is now out in paper copies of the Asian Journal of Mathematics, but still is not on the journal’s web-site. I hear that someone who called them to ask about this was told that they’re trying to make some money by selling the paper copies of this particular issue. Many libraries are now only paying for on-line access to journals like this, not sure what happens in this case. Today’s Wall Street Journal had an article by Sharon Begley about the Poincare proof story.

Jim Weatherall, who was recently a physics student at Harvard, now works at the Center for Science Writings at Stevens with John Horgan. He has a web-site, which includes his paper on Effective Field Theories and the Pragmatics of Explanation.

Two reviews of my book are from Sabine Hassenfelder and from Science A GoGo.

FQXI was supposed to announce the winners of its Templeton-funded grants this past weekend, but still nothing on their web-site. It will be interesting to see what their choices are for fundamental research in physics that is not being supported by the usual channels.

Update: The FQXI web-site now says they’ll be publicly announcing grants on Monday, July 31.

Posted in Uncategorized | 30 Comments

The String Ideology

If you want to get an understanding of the ideology that many string theorists subscribe to, you should check out Lubos Motl’s latest posting. Besides the usual dismissal of non-believers as idiots, incompetents and crackpots (an attitude that unfortunately seems to be all too common among string theorists), Lubos does actually address some scientific issues.

There’s nothing at all in what he has to say that actually makes any connection between string theory and the real world. The effort to find such a connection is completely ignored, including the work of the large part of the string theory community that continues to unsuccesfully work on this. No mention of “string phenomenology”, the landscape, or anything of this kind. He chooses instead to address scientific issues in a resolutely unscientific way, basing everything upon faith and ideology, beginning with the opening part of his argument:

I will treat the “whole Universe” and “all of string theory” as synonyma because I am not aware of any controllable framework that would allow me to separate them sharply.

Most of the rest of the posting is a series of criticisms of other ideas that people have advanced as alternatives to string theory. At one, point, after criticizing John Baez and Urs Schreiber for their interest in 2-groups and gerbes, he makes clear what he sees as the proper way to approach new ideas about fundamental physics that one is not familiar with:

The previous paragraph also clarifies my style of reading these papers. The abstract has so far been always enough to see that these fundamental gerbes papers make no quantitative comparison with the known physics – i.e. physics of string theory – and for me, it is enough to be 99.99% certain (I apologize for this Bayesian number whose precise value has no physical meaning) that the paper won’t contain new interesting physics insights.

This attitude makes life very simple. You don’t have to bother doing the hard work of trying to understand what non-string theorists are doing. All you need to do is to read the abstracts of their papers, note that they aren’t doing string theory, and then you can be sure you don’t need to read any farther, because if it isn’t string theory, it can’t provide any interesting new insights into physics.

Lubos dismisses various ideas about string theory one after the other. Much of this is devoted to dismissing the idea that has led particle physics to many of it’s biggest successes: that of looking for new symmetries or new ways of exploiting ones that are already known. He insists that:

we have learned that the gauge symmetries are not fundamental in physics.

with the idea being that because of dualities, the character of gauge symmetries is not fundamental but what he calls “social scientific”. This argument doesn’t make any sense to me. An equivalence of two different gauge theories is very interesting, but it in no way tells you that gauge symmetry is not fundamental. Making such an argument is like arguing that representations of Galois groups in number theory are not fundamentally important because of Langlands duality.

More seriously, Lubos does mention the philosophically trickiest aspect of gauge theories: the physical degrees of freedom are not parametrized explicitly, but as quotients by the gauge group action of a larger space of degrees of freedom. It’s certainly true that this is how gauge theory works, and one can try and argue that one should just ignore gauge symmetry and work directly with gauge invariant degrees of freedom. In terms of representation theory, physical states are gauge-invariant ones, so one could hope to just work with these physical states. The problem is that in most interesting cases this isn’t possible. The space of connections modulo gauge transformations is non-linear and in general can’t be parametrized in a useful way. Working with the linear space of connections, which can be easily parametrized and understood, and then taking into account the action of the gauge group, is the method that actually works and has been hugely successful. All experience shows that fundamental theories are best understood using an extended space of states, together with a method for picking out the physical subspace.

After dismissing alternatives to string theory, Lubos finally gets around to explaining what he sees as the fundamental principle of string theory. Amazingly, it’s the bootstrap philosophy, the failed idea that guided much of particle theory during the sixties and early seventies, before the advent of gauge theories and the standard model. The bootstrap philosophy is that symmetries are nothing fundamental, what is really fundamental are certain kinds of consistency conditions. All you need to do is impose these consistency conditions, and miraculously a unique solution will appear, one which describes the real world. In the sixties the hope was that the strong interactions could be understood simply by imposing things like unitarity and analyticity conditions, and that this would lead to a unique solution of the problem. It turned out that this can’t work. While unitarity and analyticity properties are very useful and tell you a lot about the implications of a theory, they in no way pick out any particular theory. There are lots and lots (a whole landscape of them, even) of QFTs that satisfy the consistency conditions. There never was evidence for uniqueness, and the bootstrap philosophy was from the beginning built on a pipe dream and large helpings of wishful thinking.

The new version of the bootstrap that Lubos wants to promote goes as follows:

In the context of quantum gravity, many of us more or less secretly believe another version of the bootstrap. I think that most of the real big shots in string theory are convinced that all of string theory is exactly the same thing as all consistent backgrounds of quantum gravity. By a consistent quantum theory of gravity, we mean e.g. a unitary S-matrix with some analytical conditions implied by locality or approximate locality, with gravitons in the spectrum that reproduce low-energy semiclassical general relativity, and with black hole microstates that protect the correct high-energy behavior of the scattering that can also be derived from a semi-classical description of general relativity, especially from the black hole physics.

So, the idea is that, at its most fundamental level, physics does not involve simple laws or symmetry principles, just some consistency conditions (of a much more obscure kind than the analyticity ones of the original bootstrap). Lubos avoids the crucial question of how big the space of solutions to these consistency conditions is. All the evidence so far is that it is so large that one can’t hope to ever get any predictions about physics out of it, and the string theory community is now divided between those who hope this problem will magically go away, and those who want to give up and stop doing science as it has traditionally been understood.

In 1973 the theory of strong interactions was heavily dominated by string theory and the bootstrap philosophy. The willingness of Veltman and ‘t Hooft to do the hard work of understanding how to properly quantize and renormalize non-abelian gauge theories ultimately led to asymptotic freedom and QCD. This pulled the plug conclusively on that era’s version of the bootstrap. Perhaps sometime in the future, new hard work on gauge theories will lead to insights that will pull the plug on this latest version, which thrives despite conclusive failure due to the kind of unscientific ideological fervor that Lubos so perfectly embodies.

Posted in Uncategorized | 54 Comments

Equivariant Cohomology

The International Congress of Mathematicians will be taking place in Madrid relatively soon, in late August. One tradition at this conference is the announcement of the Fields Medals, and I’m getting embarassed that I’m not hearing any authoritative rumors about this (other than about Tao and Perelman); if you have any, please send them my way. One other tradition is to have speakers write up their talks in advance, with the proceedings available at the time of the conference, so already some write-ups of the talks to be given there have started appearing on the arXiv.

Last night, Michele Vergne’s contribution to the proceedings appeared, with the title Applications of Equivariant Cohomology. On her web-site she has a document she calls an exegesis of her scientific work, this gives some context for the equivariant cohomology paper. She also is co-author of a book called Heat Kernels and Dirac Operators, which has a lot more detail on some aspects of this subject. Finally, there has been a lot of nice recent work in this area by Paul-Emile Paradan.

Equivariant cohomology comes into play when one has a space with a group acting on it, and it mixes aspects of group (or Lie algebra) cohomology and the cohomology of topological spaces. There are various ways of defining it, the definition that Vergne works with is a bit more general than the one more commonly used. It involves both differential forms on the space, and generalized functions on the Lie algebra of the group.

The beauty of equivariant cohomology is that it often computes something more interesting than standard cohomology, and you can often do computations simply, since the results just depend on what is happening at the fixed points of the group action. There’s a similar story in K-theory: when you have a group action on a space, equivariant K-groups can be defined, with representatives given by equivariant vector bundles. Integration in K-theory corresponds to taking the index of the Dirac operator, and in the equivariant case this index is not just an integer, but a representation of the group. The index formula relates cohomology and K-theory, and one of Vergne’s main techniques is to work with the equivariant version of this formula.

In the case of a compact space with action of a compact group, there’s a localization formula that tells you how to integrate representatives of equivariant cohomology classes in terms of fixed point data. In many cases, this leads to a simple calculation, one famous example is the Weyl character formula, which can be gotten this way. New phenomena occur when the group action is free, and thus without fixed points. This was first investigated by Atiyah (see Lecture Notes in Math, volume 401), who found that he had to generalize the index theorem to deal with not just elliptic operators, but “transversally elliptic” ones. Such operators are not elliptic in the directions of orbits of the group action, but behavior of the index is governed by representation theory in those directions.

Vergne has been studying examples of this kind of situation, and it is here that generalized functions on the Lie algebra come into play. Integrating the kind of interesting equivariant cohomology classes that occur in the transversally elliptic index theory case over a space gives not functions but generalized functions on the Lie algebra. There’s a localization formula in this case due to Witten, who found it and applied it to 2d gauge theory in his wonderful 1992 paper Two Dimensional Gauge Theories Revisited.

This kind of mathematics, growing out of the equivariant index theorem, is strikingly deep and beautiful. It has found many applications in physics, from the ones in 2d gauge theory pioneered by Witten, to more recent calculations of Gromov-Witten invariants. It leads to a mathematically rigorous derivation of some of the implications of mirror symmetry in special cases, and a wide variety of other results related to topological strings. My suspicion is that it ultimately will be used to get new insight into the path integrals of gauge theory, not just in 2 dimensions but in 3 or 4.

Update: Vergne has another nice new paper on the arXiv. It’s some informal notes on the Langlands program which she describes as follows:

These notes are very informal notes on the Langlands program. I had some pleasure in daring to ask colleagues to explain to me the importance of some of the recent results on Langlands program, so I thought I will record (to the best of my understanding) these conversations, and then share them with other mathematicians. These notes are intended for non specialists. Myself, I am not a specialist on this particular theme. I tried to give motivations and a few simple examples.

It would be great if more good mathematicians wrote up informal notes like this about subjects they have learned something about, even if they are not experts. The notes are entitled All What I Wanted to Know About Langlands Program and Was Afraid to Ask.

Posted in Uncategorized | 22 Comments

This Week’s Hype

This week’s string theory hype is embedded in a story by Michael Schirber about the possibility of variation of fundamental constants that has appeared on msnbc.com, foxnews.com, and Slashdot. According to Schirber:

A popular alternative to relativity, which assumes that sub-atomic particles are vibrating strings and that the universe has 10 or more spatial dimensions, actually predicts inconstant constants.

According to this string theory, the extra dimensions are hidden from us, but the “true” constants of nature are defined on all dimensions. Therefore, if the hidden dimensions expand or contract, we will notice this as a variation in our “local” 3D constants.

It’s kind of funny to hear that string theory “predicts” that constants like the fine structure constant will vary in time. When Michael Douglas was here in New York giving a talk last year and was asked about predictions of the string theory landscape, he said that the best one was that the fine structure constant would NOT vary. His argument was that it couldn’t vary since effective field theory arguments would imply a corresponding variation in the vacuum energy, something inconsistent with observation. So string theory both predicts that the fine structure constant will vary, and predicts that the fine structure constant will not vary.

For more string theory hype, Michio Kaku now has a MySpace site, including a blog. He also has his own web-site, mkaku.org, which has recently been redesigned and now prominently features an offer of signed copies of his (softcover) books for $50.

Update: There’s an informed take on what the data about varying fundamental constants actually says from Rob Knop.

Posted in This Week's Hype | 62 Comments

Interviews With Atiyah and Gell-Mann

A correspondent wrote in to tell me about a wonderful web-site, called People’s Archive.  Their idea is to do in-depth interviews at a peer-to-peer level with the great thinkers and creators of our time.  They’ve been doing this for a few years, only recently providing open access to much of the content on their site.

The two interviews of people closest to my interests are ones of Sir Michael Atiyah and Murray Gell-Mann.  The interviews are very long, several hours.  So far I’ve made my way through the Atiyah interview (which is in 93 pieces), mostly just reading the transcript, and have poked around a bit in the Gell-Mann interview (which is in 200 pieces).

Atiyah is on just about every mathematician’s list as one of the very few greatest figures in the second half of the twentieth century.  He’s also had a major impact on the relation of mathematics and physics. The interview essentially provides a long memoir of his life, concentrating on his mathematical research work, explaining in detail how it came about and how it evolved.  It’s truly wonderful, with all sorts of interesting stories, together with insights into mathematics and how it is done at the highest level.

The interview begins with his childhood in Khartoum, then discussing his later education in England, ending up at Cambridge where he was a student of Hodge. One story he tells (segment 21) is about Andre Weil’s reaction when Atiyah showed him his work at the time he was a student.  The segment is called “how not to encourage somebody.” Atiyah also later on talks about his mathematical heroes, especially Hermann Weyl.  Physicists often confuse Weil and Weyl, who were two rather different characters.  They both did important work on representation theory with Weyl responsible for, among many other things, the representation theory of compact Lie groups, and the exponentiated form of the Heisenberg commutation relations (what mathematicians call the Heisenberg group).  Weil was responsible for the geometric construction of representations of compact Lie groups (Borel-Weil theory), and a general theory of representations of Heisenberg-like groups (known as the Segal-Shale-Weil, or metaplectic representation).

Atiyah tells about the importance of his years spent at the IAS in the fifties and the people that he met there.  It was one of the great meccas of mathematics at the time.  He tells in detail the story of how the index theorem came about (segment 43), and the crucial role provided by the Dirac operator in linking together the analysis and the topology.  The Dirac operator was rediscovered by him and Singer during their work.  He also explains the important role from the beginning of equivariant versions of the theorem, in providing motivating examples and requiring the most general and deepest sort of proof.

During the 1970s Atiyah started to get deeply involved in interactions with physicists, and he recalls going to MIT to discuss instantons with them, meeting a young Edward Witten in Roman Jackiw’s office there (segment 67).  He describes in detail his interactions with Witten, especially his prodding of Witten that led to the discovery of the TQFT for Donaldson theory (segment 71), something that took Witten quite a lot of effort before he came up with the necessary twisting of supersymmetry to make this work.  He also tells the story of the famous dinner at Annie’s in Swansea where, in discussions with Atiyah and Segal, Witten came up with his Chern-Simons theory.  The idea was so compellingly correct that Witten decided the next day to not give the talk he had planned, but to talk about this new theory born only the night before.

In his comments on the future (segment 74), Atiyah refers to the new ideas brought into mathematics from QFT as “high energy mathematics”, and predicts that mathematics in the future will make crucial use of the sort of “infinities of infinities” that occur in QFT structures, but that mathematicians until recently have had no real idea how to approach.  He also makes some interesting comments about what sort of problems it is best for graduate students to work on, and gives (segment 90) a wonderful description of the importance of beauty in mathematics and his own definition of it.

All in all, it makes fantastic reading, I hope the company that put this together will clean up the transcripts and put them out in book form.

I haven’t had the time to go through all of the Gell-Mann interview, but it also contains all sorts of valuable history.  One little-known fact that Gell-Mann mentions is that the SU(3) eight-fold way that he got the Nobel prize for came about because, after he had spent a long time trying to generalize SU(2)xU(1) unsuccessfully, a mathematics assistant professor (Richard Block) finally explained to him that what he was doing was trying to find a certain kind of Lie algebra, and the one he was looking for was the Lie algebra of SU(3).

Posted in Uncategorized | 30 Comments

Quick Links

Taking off tomorrow for a long weekend, internet access may be spotty. Here are some things that may be of interest:

HEPAP is meeting today and tomorrow, the presentations given at the meeting are available here.  JoAnne Hewett is there and has a posting on Cosmic Variance.
The Seed article with various physicist’s views about what to expect at the LHC that was discussed here earlier is now available online.

There’s an article about Jim Simons in Newsday (via Angry Physics).

Maybe a cosmologist can comment on the significance of this, but over at CosmoCoffee there’s a discussion of a new paper reanalyzing the latest WMAP data and coming up with a scalar spectral index ns= .969 +/- .016. This is now 2.0 sigma away from 1, instead of the 2.7 sigma of the earlier analysis. This deviation from 1 was widely sold as evidence for inflation (since the simplest inflationary models give values slightly less than one), the fact that it is now only a 2 sigma effect seems to make this case a bit weaker.

The Institut Henri Poincare in Paris will be having a three-month-long program on Groupoids and Stacks in Physics and Geometry. The web-siter there contains a good associated overview of the subject.

Bruno Kahn has an excellent expository article on motives.

Over at the Edge web-site Lawrence Krauss has a piece called The Energy of Empty Space That Isn’t Zero. It’s partly about the cosmological constant, and discusses a workshop on Confronting Gravity that he organized back in March, which brought many prominent theorists together at a Caribbean resort to discuss physics, travel in a submarine, and hang out at the “private island retreat” of the funder of the event, science philanthropist Jeffrey Epstein.

Krauss has many provocative things to say about the current state of theoretical physics, including perhaps the most concise and vivid description I’ve read in a while:

It’s been very frustrating for particle physicists, and some people might say it’s led to sensory deprivation, which has resulted in hallucination otherwise known as string theory.

He also has a somewhat longer skeptical take on extra dimensions, together with an attempt at positive spin:

Many of the papers in particle physics over the last five to seven years have been involved with the idea of extra dimensions of one sort or another. And while it’s a fascinating idea, but I have to say, it’s looking to me like it’s not yet leading anywhere. The experimental evidence against it is combining with what I see as a theoretical diffusion — a breaking off into lots of parts. That’s happened with string theory. I can see it happening with extra-dimensional arguments. We’re seeing that the developments from this idea which has captured the imaginations of many physicists, hasn’t been compelling.

Right now it’s clear that what we really need is some good new ideas. Fundamental physics is really at kind of a crossroads. The observations have just told us that the universe is crazy, but hasn’t told us what direction the universe is crazy in. The theories have been incredibly complex and elaborate, but haven’t yet made any compelling inroads. That can either be viewed as depressing or exciting. For young physicists it’s exciting in the sense that it means that the field is ripe for something new.

Posted in Uncategorized | 21 Comments

String Theory for Undergraduates

I hadn’t realized how many of the physics departments at the top universities in the US have instituted undergraduate string theory courses.  The only one I was aware of was MIT’s 8.251, String Theory for Undergraduates, taught by Barton Zwiebach, who developed a textbook for the course, A First Course in String Theory. 

Maybe now that there’s a textbook, that is what has caused other institutions to follow suit.  Caltech has Physics 134, String Theory, and Carnegie-Mellon has Physics 33-652, An Introduction to String Theory.  Stanford goes its competitors one better by having two undergraduate courses in string theory: Physics 153A, Introduction to String Theory I, and Physics 153B, Introduction to String Theory II. This last course even promises to explain to students how string theory is connected to particle physics. 

Posted in Uncategorized | 119 Comments

Various Weirdness

Must be something in the air, lots of weird things going on recently:

My book has been officially non-endorsed by the people at Axes & Alleys.

I finally realized why Lubos was carrying on about how if any errors in my book had been corrected it was because of him. Evidently one of the university presses I sent it to decided he was an appropriate reviewer for the book, and sent it to him to referee. I assume the review was as loony as the one he put on Amazon, but I never saw it, and have no idea whether it convinced the publisher to turn down my book. I do wonder which if any string theorist suggested Lubos to the publisher as an appropriate referee. The “free marketplace of ideas”, indeed…

Lubos has put up a paranoid rant about how someone just told him that I “made amazon.co.uk erase all reviews” of the book except for the 5-star ones. This is complete nonsense. When his review appeared there and I first saw it over a month ago, I did hit the “report as inappopriate” link at the bottom of the review, but that’s all I ever did about this, and I never saw any other negative reviews except his. Actually, I think his review was responsible for several people posting positive reviews in response to it (thanks folks!). I have no idea why Amazon UK recently deleted his review. Perhaps lots of people hit the “report as inappropriate” link, perhaps someone there just read it and recognized it for what it is. I wrote a comment on Lubos’s blog explaining this, but it was immediately deleted (and has now been added to the Censored Comments From the Reference Frame section of this blog). It’s pretty hilarious how exercised he is about censorship.

Over at the arXiv in hep-ph, a few days ago there was a paper from Tom Banks entitled Remodeling the Pentagon After the Events of 2/23/06. Somehow, Banks seems to be comparing the appearance of the paper of Intriligator, Seiberg and Shih about metastable SUSY breaking to the events of 9/11, and the following “neo-conservative revolution” in the US. Banks had a SUSY model containing a “Pentagon” (a “new strongly interacting SU(5) super-QCD with 5 flavors of pentaquark”), which he now enhances with metastable SUSY breaking to get what he describes as “a lean and mean, stripped down version of the Pentagon, suitable for rapid deployment to solve all of the problems of the supersymmetric standard model” (a footnote warns about the Pentagon’s propensity for hyperbole).

A commenter here pointed to another paper on hep-ph, from last night, entitled Neighboring Valley in the String Landscape. Pretty much pure science fiction, although it did make me realize that just about any Landscape paper could be improved by doing what this author did, including an impressive color graphic of the earth de-materializing.

Over at hep-th, there’s a new paper last night, entitled Generalized Flux Vacua. Using a new construction, the authors find an infinite number of solutions that are supposed to be consistent backgrounds for string theory. This pulls the plug on the arguments from a couple weeks ago by Acharya and Douglas that the Landscape should be finite (after imposing varous cutoffs). The authors also claim that this drains some of the swampland promoted recently by Ooguri and Vafa. They do note that, although string theory is a completely precise and rigorous framework, it’s impossible to tell whether the backgrounds they describe really are consistent vacua for string theory (because of, among other things, possible non-perturbative effects):

This somewhat surprising result seems to contradict recent predictions regarding properties of the string landscape, though as we will discuss there are some reasons why the solutions we find may not correspond to stable nonperturbative vacua in a complete string theory framework.

Posted in Not Even Wrong: The Book, Uncategorized | 29 Comments

Many Worlds In One

Alex Vilenkin has a new popular book out about cosmology, entitled Many Worlds In One. It’s mainly about the extremely speculative end of cosmology, and much of it is devoted to explaining the author’s ideas on eternal inflation, creating the universe by tunneling out of nothing, and the anthropic landscape, together with stories about how he came to these ideas. It contains various amusing anecdotes, especially about Alan Guth. Sean Carroll is credited with the following story:

One of the leading superstring theorists, Joseph Polchinski, once said that he would quit physics if a nonzero cosmological constant were discovered. Polchinski realized that the only explanation for a small cosmological constant would be the anthropic one, and he just could not stand the thought.

He also describes the reaction to his anthropic arguments back during the years when these were not all the rage like they are now:

After one of my seminars, a prominent Princeton cosmologist rose from his seat and said, “Anyone who wants to work on the anthropic principle – should.” The tone of his remark left little doubt that he believed all such people would be wasting their time.

Vilenkin’s book covers much the same ground as Susskind’s, although from the point of view of a cosmologist, not a particle physicist. A huge amount is made of the supposed anthropic “prediction” of the value of the cosmological constant (any news of the rumor from Sean Carroll of new work by prominent Princeton cosmologist Paul Steinhardt showing this is bunk?). Unlike Susskind, Vilenkin at least doesn’t seem to be on a campaign to attack the “Popperazi” and convert everyone to anthropics, but he demonstrates a similar lack of concern for the fact that the ideas he is discussing don’t lead to much if anything in the way of a testable experimental prediction.

Here’s his scientifc program for 21st century physics, which he hopes will be spent working on the anthropic landscape:

First, we will need to map the landscape. What kinds of vacua are there, and how many of each kind? We cannot realistically hope to obtain a detailed characterization of all 10500 vacua, so some kind of statistical description will be necessary. We will also need to estimate the probabilities for bubbles of one vacuum to form amidst another vacuum. The we will have all the ingredients to develop a model of an eternally inflating universe with bubbles inside bubbles inside bubbles… Once we have this model, the principle of mediocrity can be used to determine the probablility for us to live in one vacuum or other.

Unfortunately for this research program, it has yet to even begin to get off the ground, and there are very good arguments that it can never succeed. There are an infinite number of possible vacua, and trying to make this finite so one can do statistics requires putting in cutoffs, with results then strongly depending on the cutoff. The large numbers of these vacua make any attempts to identify ones that agree with the real world computationally completely intractable. Even if one could do this, all evidence is that one would end up with broad statistical distributions for many of the parameters of the standard model, providing no useful prediction of what new experiments will see, or any insight into why these parameters have the values that they do.

Posted in Uncategorized | 37 Comments