The Work of Robert Langlands

This is more of an advertisement than a blog post. This evening on the arXiv James Arthur has posted a wonderful 204 page document explaining the work of Robert Langlands, written in conjunction with the award of the Abel Prize to Langlands.

This isn’t an introduction to the subject, but if you have some idea of what the Langlands program is about, it provides a wealth of valuable explanations at a more detailed level of exactly what Langlands discovered. It ends with a discussion of the “Beyond Endoscopy” program of his later career.

Posted in Langlands | 1 Comment

Physicists Prove That Parallel Worlds Cannot Be Extremely Different From Each Other

Stories about the latest prediction of superstring theory here and here, based on a Tsukuba University press release about this paper. Generally ignoring this kind of nonsense these days, but the new feature of this one is that the press release sure seems to have been written by ChatGPT.

Posted in This Week's Hype | 4 Comments

A Mathematics AI Factory?

A few days ago I read a fascinating article in New York magazine: Inside the AI Factory, which explained how the very large business of hiring humans to do tasks that generate training data for AI works. One reaction I had to this was “at least this means math is safe from AI, nobody is going to pay mathematicians to generate this sort of training data.” Yesterday though I ran across this tweet from Kevin Buzzard, which advertises work (see this link) that seems to be of this kind.

A company called Prolific is advertising work paying 20-25 pounds/hour doing tasks in Lean 3. This company is in exactly the business described in the NY mag articles, hiring people to do tasks as part of “studies”, which often are generating AI training data.

One unusual thing about this whole industry is that if you sign up for this work you often have no idea who your employer really is, or what your work will be used for, and you sign a non-disclosure agreement to not discuss what you do. In this case, a few things can be gleaned from discussions on the Lean Zulip server:

  • “it’s 40 dollars/hr now actually”
  • “I think everyone signed a consent form preventing them from disclosing any problems or even their participation.”
  • One problem was formalizing a proof of sin(x)=1 implies x=pi/2 (mod 2pi).
  • A representative of the company writes: “Some of our biggest partners are keen to work with Lean users because of its applicability as a theorem prover. They plan to launch numerous studies that require participants to have either a working or expert knowledge of Lean 3.” By “biggest partners”, presumably this is Microsoft/Google or something, not some small publishing organization.

If anyone knows anything about what’s up with this incipient possible math AI factory, please let us know. On the more general issues of math and AI, I’d rather not host a discussion here, partly because I’m pretty ignorant and not very interested in spending time changing that. The situation in mathematics is complicated, but as far as fundamental physics goes, theorem-proving is irrelevant, and applying “big data”/machine-learning/AI techniques to generate more meaningless calculations in a field drowning in them is pretty obviously unhelpful.

For a much better place to read about what is happening in this area, there’s an article in today’s New York Times by Siobhan Roberts: A.I. Is Coming for Mathematics, Too. At Silicon Reckoner, Michael Harris is in the middle of a series of posts about this past month’s workshop on “AI to Assist Mathematical Reasoning.”

Posted in Uncategorized | 10 Comments

Fantasy, Faith and Physics

No blogging here the past few weeks, partly because I was away on vacation for a little while, but more because there hasn’t been anything I’ve seen worth writing about. Yesterday’s pulsar timing array and IceCube announcements unfortunately didn’t tell us anything about fundamental physics. In the past, such observational results pretty reliably led to absurd claims about evidence for string theory that I could complain about, but that phenomenon seems to be dying down. In this case, the only story that had such claims was one from Quanta Magazine, which explained that “the observations so far from NANOGrav and the other teams are consistent with what we’d expect to see from cosmic strings.”

I noticed that the people at the Institute of Art and Ideas have put together a program for Monday that includes a debate on the topic of “Fantasy, Faith and Physics.” The framing of the debate contrasts the conventional view of science with an alternative possibility: “should we accept that some beliefs, especially in the foundations of physics, are akin to religious beliefs dressed in mathematical language to give our theories meaning?” This kind of misses the point about the current problems in fundamental physics, since I doubt any of the panelists are going to defend such an alternative.

Very odd is what leads into this debate, an interview with Michio Kaku about his new book. Why promote such an atrociously bad book (see here and here) and broadcast Kaku’s absurd claims about this subject?

Maybe this debate will somehow lead to a substantive discussion of the main underlying problem, the nearly fifty-year dominance of a failed set (GUTs/SUSY/strings) of ideas about unification. A very powerful and influential part of the physics community, which will be represented in the debate by Juan Maldacena, continues to insist on the centrality of this set of ideas. To get a clear look at his arguments, see a recent IAI interview In defence of string theory and his colleague Edward Witten’s recent colloquium talk What Every Physicist Should Know About String Theory. The argument Maldacena and Witten are making is essentially the same one from the mid-eighties: string theory is the only possible consistent way to go beyond quantum field theory and get a consistent theory of quantum gravity. In my book and many other places, I’ve explained the many problems with this. Put simply, the problem is that there is no such thing as a well-defined string theory which successfully gives the SM and GR in four dimension. The claims about consistency are either about models that don’t reproduce the real world, or about still-unrealized hopes and dreams (which Penrose characterizes as “Fantasy”) rather than anything well-defined.

For a very clear statement of his point of view from Witten, see the question and answer section of the recent colloquium talk, starting around 1:20, where he starts by emphasizing the rigidity of the framework of relativistic quantum field theory. He then states:

My point of view is that string theory is the only significant idea that has emerged for any modification of the standard framework that makes any sense.

This is pretty much exactly the same argument he was making nearly forty years ago. I didn’t find it convincing then, since it seemed to me there was no reason to be so sure that a deeper understanding of relativistic QFT could not possibly lead to a consistent quantum theory with low energy limit GR. Witten had a good argument in 1984 that a possibly consistent generalization of relativistic QFT was worth studying, but the problem is that decades and tens of thousands of papers later, as far as unification goes, this study has been a failure, taking the field down paths (extra dimensions, SUSY) which lead to complex theories that don’t look at all like the real world.

If you look at where things have ended up and the current research directions Maldacena and Witten are pushing, the odd thing is that they seem to have given up on unification, and for years now have been emphasizing the study of black holes in toy models with little to no connection to string theory. The most disturbing thing I heard in the Witten talk was at 1:24:16

If you had sufficient computing power, maybe with a quantum computer with a million qubits, I think you could simulate the dynamics of a quantum black hole…

Here Witten seems to be pointing to exactly the argument recently made by Juan Maldacena (see here), which has a specific claim about what you could do with a million qubits. This particular calculation would not in any way address the problems of the string theory program and is getting into Michio Kaku/wormhole publicity stunt territory.

Update: There’s an interview with Witten here, associated with his receipt of the Hamburg Prize for Theoretical Physics. About string theory, he explains that, despite 50 years of effort

We don’t understand it very well… In fact, I’d say we only understand a small part. So we’ve been struggling with that ever since the 70s and 80s trying to understand the intellectual framework that it should have been placed in.

He remains convinced though that alternative ideas are not the way to go:

… I find it implausible that physicists would discover a theory that is such a rich source of fruitful ideas about things that are definitely important in other fields by accident. And if we were not on the right track, I would say, it was a big accident. So my personal view is that it would be a cosmic conspiracy if string theory isn’t on the right track.

There is a growing number of critics who complain that string theory is very interesting, but hasn’t really delivered. Because we still have no idea whether it’s correct and we couldn’t make any experiments, which tells us if this is the case. According to you: To what extent is that criticism justified?

Well, not much, honestly. Where critics of string theory have had interesting ideas, they’ve tended to be absorbed as part of string theory. That’s happened several times. Twistor theory, black hole thermodynamics and noncommutative geometry are three examples of interesting ideas. They were by some regarded as alternatives or competitors of string theory, but actually in practice were absorbed as part of the picture in string theory.

Posted in Uncategorized | 14 Comments

Zen University

The establishment of a new university in Japan has been announced, to be called ZEN University. One component of the new university will be the Inter Universal Geometry Center, with Fumiharu Kato as director, Ivan Fesenko as deputy director. The Center will offer an introductory course on IUTT. There’s a video here.

The website seems to be Japanese-only, here’s what I get via Google Translate:

If you pass all of our courses, you will be better equipped with IUT theory than any mathematics student in any university in the world. A student who blooms his talents that emerges from within. We plan to prepare prizes for such young people and encourage them to continue to participate in the community that seriously researches IUT theory…

Although it is difficult to understand, there are already more than 20 mathematicians in the world who understand and develop the IUT theory. I hope that you will boldly take on the challenge of researching IUT theory together with me so that you can be one of the next.

The problem with this subject though is not the number of people who understand IUTT, but the number who can explain to others in a convincing way the proof of corollary 3.12 in the third IUTT paper. From everything I have seen, that number has always been and remains zero.

Update: Another video here.

Posted in abc Conjecture | 17 Comments

From Quantum Mechanics to Number Theory via the Oscillator Representation

This past semester I taught our graduate class on Lie groups and representations, and spent part of the course on the Heisenberg group and the oscillator representation. Since the end of the semester I’ve been trying to clean up and expand this part of my class notes. I’m posting the current version, working title From Quantum Mechanics to Number Theory via the Oscillator Representation. This is still a work-in-progress, but I’ve decided today to step away from it a little while, work on other things, and then come back later perhaps with a clearer perspective on what I’d like to do with these notes. In a few days I’m heading off for a ten-day vacation in northern California, and one thing I don’t want to be thinking about then is things like how to get formulas involving modular forms correct.

There’s nothing really new in these notes, but this is material I’ve always found both fascinating and challenging, so writing it up has clarified things for me, and I hope will be of use to others. The basic relationship between quantum mechanics and representation theory explained here is something that I’ve always felt deserves a lot more attention than it has gotten.

In the past I’ve often made claims about the deep unity of fundamental physics and mathematics, One goal of this document is to lay out precisely one aspect of what I mean when making these claims. There are other much less well understood aspects of this unity, but the topic here is something well-understood.

One thing that struck me when thinking about this and teaching the class is that this is a central topic in representation theory, but one that often doesn’t make it into the textbooks or courses. Typically mathematicians develop theories with an eye to classifying all structures of a given kind. This case is a very unusual example where there is effectively a unique structure. The classification theorem here is that there is basically only one representation, but it is one with an unusually rich structure.

When I get back from vacation, I plan to get back to work on the ideas about twistors and unification that I’m still very excited about, but have set to the side for quite a few months while I was teaching the class and writing these notes. More about that in the next few months…

Posted in Uncategorized | 3 Comments

Various and Sundry

A few unrelated items:

  • I’ve been hearing from several people about their plans to travel to China this summer, just realized that they’re all going there for the same reason, to participate in the First International Congress of Basic Science. This is something new and on a grand scale, featuring 240 or so invited speakers, award of a new million dollar – plus prize, together with prizes for “Best paper” over the last five years in 36 different categories. Yau is the main organizer, and the Chinese government is providing the funding. So, if it’s July 16-28 and you are wondering where your colleagues are, quite possibly the answer is Beijing.
  • I’m doing my best to try not to think about the implications of recent AI developments for mathematics, but someone who is doing a lot of thinking about this is Michael Harris, who this week at his Silicon Reckoner substack discusses Google’s use of arXiv math papers to train their Minerva language model. Harris raises the interesting question of whether this use of arXiv papers violates the licenses of these papers, standard ones of which include language like

    You may not use the material for commercial purposes.

    Even if Google is massively violating the arXiv licenses for commercial purposes, it’s unclear whether anything can be done about this, especially given the legal resources Google can afford. In addition, I suspect that when hearing about this a more common response than “this is terrible, I want to sue” would be “this is great, how can I get this thing to write papers for me, or even better, get Google to pay me to help make this possible.”

  • Last month Symmetry magazine had an article Whatever happened to the theory of everything? featuring some quotes from me and John Ellis. Ellis explains that the particle physics community has become skeptical of supersymmetry and string theory:

    Supersymmetry seemed less and less likely to be right, and superstring theory never materialized into something with testable and concrete predictions.

    “The rest of the community is asking, ‘Where’s the beef?’” Ellis says. “There hasn’t been any beef yet. Maybe particle physicists have turned a bit vegetarian and have lost interest in stringy beef.”

  • Possibly in response to the problem for string theory that Ellis is pointing to, Witten next week is giving a non-technical theoretical physics colloquium talk at the ICTP on What Every Physicist Should Know About String Theory. Back in 2015 he published something with the same title in Physics Today, which I wrote about here. We’ll see if there are any new arguments on this now very old topic.

Update: The 2023 Shaw prize in mathematics is going to Drinfeld and Yau.

Update: I missed the fact that last there was a Breakthrough Prize ceremony last month. This year they’ve emphasized even more the “Oscars of science” idea by moving the ceremony from Silicon Valley to LA and having it at the Academy Museum of Motion Pictures. The announcement has none of the names of the scientists, just the names of the Hollywood stars that would attend.

Update: I see (from a Strumia tweet) that a Witten 2015 talk with the same title is available here, was given I guess as a public talk at Strings 2015. It’s all about the differences between the 1d single-particle path integral and the 1+1d worldsheet path integral, unclear to me why this is something every physicist needs to know about, or whether this year’s version will be different.

Posted in Uncategorized | 25 Comments

Quantum Supremacy

We’re hearing this week from two very different parts of the string theory community that quantum supremacy (quantum computers doing better than classical computers) is the answer to the challenges the subject has faced.

New Scientist has an article Quantum computers could simulate a black hole in the next decade which tells us that “Understanding the interactions between quantum physics and gravity within a black hole is one of the thorniest problems in physics, but quantum computers could soon offer an answer.” The article is about this preprint from Juan Maldacena which discusses numerical simulations in a version of the BFSS matrix model, a 1996 proposal for a definition of M-theory that never worked out. Maldacena points to this recent Monte-Carlo calculation, which claims to get results consistent with expectations from duality with supergravity.

Maldacena’s proposal is basically for a variant of the wormhole publicity stunt: he argues that if you have a large enough quantum computer, you can do a better calculation than the recent Monte-Carlo. In principle you could look for quasi-normal modes in the data, and then you would have created not a wormhole but a black hole and be doing “quantum gravity in the laboratory”

seeing these quasinormal modes from a quantum simulation of the quantum system under discussion, would be a convincing evidence that we have created something that behaves as a black hole in the laboratory.

This isn’t a publicity stunt like the wormhole one, because the only publicity I’ve seen is a New Scientist article, and this is just a proposal, not actually executed. Maldacena estimates that to reproduce the recent Monte-Carlo calculation you’d need 7000 or so logical qubits, which the New Scientist reporter explains would be something like one million physical qubits. So, there’s no danger Quanta magazine will be producing videos about the creation of a black hole in a Google lab any time soon.

Maldacena has been chosen to give the presentation tomorrow at the SLAC P5 Town Hall about a vision for the future of fundamental theory, no idea whether creating black holes in the lab using quantum computers will be part of it.

At the other extreme of respectability and influence in the physics community, Michio Kaku has a new book out, Quantum Supremacy. I took a quick look yesterday at a copy at the bookstore. I’ll leave it to others to discuss the bulk of the book, which seems to be about how “There is not a single problem humanity faces that couldn’t be addressed by quantum computing.” The last few pages are about string theory, beginning with the usual bogus pro-string theory arguments, working up to the ending of the book: “So quantum computers may hold the key to creation itself” (i.e. they will “solve all the equations of string theory”). His argument for the relevance of quantum computers to string theory is that they will calculate paths in the landscape:

One day, it might be possible to put string theory on to a quantum computer to select out the correct path. Perhaps many of the paths found in the landscape are unstable and quickly decay, leaving only the correct solution . Perhaps our universe emerges as the only stable one.

This is justified by a bizarre paragraph about lattice gauge theory, which explains that since we can’t solve QCD analytically, here’s what theorists do:

One solves the equations for one tiny cube, uses that to solve the equations for the next neighboring cube, and repeats the same process for all that follow. In this way, eventually the computer solves for all the neighboring cubes, one after the other.

This pretty conclusively shows that the explanation for the Kaku phenomenon is simply that he has no idea what he is talking about.

Update: Michio Kaku was on a very recent Joe Rogan Experience, getting a huge audience for his explanations of quantum computing. Some commentary here.

Update: The reviews of the book have been pretty uniformly very enthusiastic, with the reviewers evidently incapable of distinguishing sense from nonsense. A depressing example is at Science magazine. Why choose as reviewers of a book on quantum computing two people who know nothing about the subject? Is it because Science couldn’t find anyone who does know about quantum computing willing to read the book and write about it?

Update: Scott Aaronson has read the book and confirms that it’s every bit as awful as it seems. For a different look at out-of-control quantum computing hype, see here

Update: The one thing keeping my spirits up while reading the almost uniformly glowing reviews of this piece of junk has been the thought that “at least the New York Times is kind of doing the right thing”: not reviewing the book. Just noticed they do have a review up:

That mind-blowing future is the focus of the final five or so hours of the audiobook, which explores the real-world impacts quantum computing could have: altering our immune systems to avoid cancer and Alzheimer’s, increasing crop yields, ending world hunger. As Kaku puts it, “the familiar laws of common sense are routinely violated at the atomic level”; but his lucid prose and thought process make abundant sense of this technological turning point.

Just shoot me…

Posted in Book Reviews, This Week's Hype, Wormhole Publicity Stunts | 29 Comments

string theory lied to us and now science communication is hard

I want to make up for linking to something featuring Michio Kaku yesterday by today linking to the exact opposite, an insightful explanation of the history of string theory, discussing the implications of how it was sold to the public. It’s by a wonderful young physicist I had never heard of before, Angela Collier. She has a Youtube channel, and her latest video is string theory lied to us and now science communication is hard.

Instead of going on in detail about the video and what’s great about it, I’ll just give you my strongest recommendation that you should go watch it, now. It’s as hilarious as it is brilliant, and you have to see for yourself.

Posted in Uncategorized | 61 Comments

This Week’s Hype

According to this article, string theory is going to be tested using quantum computers, by doing a lattice QCD calculation:

The way string theory is tested involves ‘lattice quantum chromodynamics’: a calculation problem far beyond what digital computers can achieve. ‘Quantum computers,’ he writes, ‘may be the final step in finding the Theory of Everything.’

‘I’m not a computer person. I’m a theoretical physicist,’ he says. ‘But I got into quantum computers because I realised this may be the only way to quantitatively prove that string theory is correct. String theory exists in the multiverse. That is, we exist perhaps in parallel states which are bizarre, with new laws of physics, but we coexist with them. The way to prove it is with a quantum computer.’

I suppose you need to buy the book to find out more.

Posted in This Week's Hype | 6 Comments