Arthur Wightman 1922-2013

I just heard today that mathematical physicist Arthur Wightman passed away earlier this month, at the age of 90. Wightman was one of the leading figures in the field of rigorous quantum field theory, the effort to try and make precise sense of the often heuristic methods used by physicists when they deal with quantum fields. He was a well-liked and very respected professor at Princeton during the years 1979-84 that I was a graduate student there, but unfortunately I don’t think I ever made an effort to talk to him, to my loss. The university has something about him here, the department here.

Wightman is most well-known for the “Wightman Axioms”, which are an attempt to formalize the fundamental assumptions of locality and transformation under space-time symmetries that any sensible quantum field theory should satisfy. His 1964 book with Raymond Streater, PCT, Spin, Statistics and All That, explains these axioms and shows how they lead to some well-known properties of quantum field theories such as PCT invariance and the Spin-Statistics relation. When this work was being done during the 1950s and early 60s, quantum field theory was considered something that couldn’t possibly be fundamental. All sorts of discoveries about strong interaction physics were being made, and it seemed clear that these did not fit into the quantum field theory framework (this only changed in 1973 with asymptotic freedom and QCD). In any case, problems with infinities of various sorts plagued any attempt to come up with a completely consistent way of discussing interacting quantum fields, providing yet another reason for skepticism.

Wightman was one of a small group of mathematical physicists who reacted to this situation by trying to come to grips with the question of exactly what a quantum field theory was, in an attempt to find both the implications of the concept and its limitations. After the early 60s, attention moved from the axioms and their implications to the question of “constructive quantum field theory”: could one explicitly construct something that satisfied the axioms? Examples were found in 2 and 3 space-time dimensions, but unless I’m missing something, to this day there is no rigorous construction of an interacting QFT in 4 space-time dimensions. There is every reason to believe that Yang-Mills theory, constructed with a lattice cut-off, has a sensible continuum limit that would provide such an example, but this remains to be shown (and there’s a one million dollar prize if you can do this).

Thinking back to the early 1980s and my days as a graduate student, it’s clear what some of the reasons were why I didn’t spend time going to talk to Wightman. With the triumph of the Standard Model, attention had turned to questions about quantum gravity, as well as questions about the non-perturbative behavior of QCD. I certainly spent some time trying to read and understand the Streater-Wightman volume, but its emphasis on the role of the Poincaré group meant it had little to say about QFT in curved space-time, much less how to think about quantized general relativity. Gauge theories in general did not seem to fit into the Streater-Wightman framework, with the tricky issue of how to handle gauge symmetry something their methods could not address. For non-perturbative QCD, we had new semi-classical computation methods, and I was happily programming computers do numerical simulations of Yang-Mills theory. Why pay attention to the difficult analysis needed to say anything rigorous about quantum fields, when the path integral method seemed to indicate one could just put them on a computer and have the computer tell you the answer?

In later years I became much more sensitive to the fact that quantum fields can’t just be understood by a Monte-Carlo calculation, as well as the importance of some of the questions that Streater and Wightman were addressing. As particle theory continues to suffer deeply from the fact that the SM QFT is just too good, anything that can be done to better understand the subtleties of QFT may be worthwhile. It remains true that gauge theories require new methods way beyond what is in Streater-Wightman, but looking back at the book I see it as largely devoted to understanding the role of space-time symmetries in the structure of the theory. The importance of such understanding of how symmetries govern QFT may be a lesson still not completely absorbed, with gauge symmetries and diffeomorphism symmetries part of a story extending Streater and Wightman to the Standard Model, in a way that we have yet to understand.

Posted in Obituaries | 38 Comments

This Week’s Finds

Twenty years ago this past week, John Baez posted the first of his "This Week's Finds in Mathematical Physics" to the sci.physics newsgroups, inaugurating internet blogging about Mathematical Physics, many years before anyone even knew what a blog was. For his first posting, try looking at
http://math.ucr.edu/home/baez/twf_ascii/week1
and for all the rest of them see
http://math.ucr.edu/home/baez/TWF.html

There's a huge amount of interesting material in John's TWF postings, and the amount of effort that he has put into providing detailed, clear explanations on all sorts of topics is kind of staggering. While I often try to emulate what John has done (and "This Week's Hype" of course is a sort of homage, one he may not appreciate...), I feel I'm doing well if I can manage to put together a few sentences of comments about a "Find", with John's much more useful detailed expository work something beyond my capabilities.

For a "Find" from this past week in mathematical physics, I can recommend Hermann Nicolai's "Quantum Gravity: the view from particle physics" (arXiv:1301.5481) a write-up of his lecture this past summer at a conference in Prague. He makes a point about quantum gravity that I very much agree with: the problem with the subject is not so much that of finding a consistent quantum gravity, but of finding one that fits together with the SM and tells us something new that we can check. He writes:

Being exposed to many talks from the different ‘quantum gravity camps’ I am invariably struck by the success stories I keep hearing, and the implicit or explicit claims that ‘we are almost there’. I, for one, would much prefer to hear once in a while that something does not work, and to see some indications of inconsistencies that might enable us to discriminate between a rapidly growing number of diverging ideas on quantum gravity [27, 28]. If, however, the plethora of theory ambiguities were to stay with us I would conclude that our search for an ultimate explanation, and with it the search for quantum gravity, may come to an ignominious end (like in Breughel’s painting).

and

To conclude let me restate my main worry. In one form or another the existing approaches to quantum gravity suffer from a very large number of ambiguities, so far preventing any kind of prediction with which the theory will stand or fall. Even at the risk of sounding polemical, I would put this ambiguity at 10^500 (or even more) – in any case a number too large to cut down for any conceivable kind of experimental or observational advance.

Included in his talk are various more specific comments about these issues, well worth pondering. If I were John Baez, I'd have the energy to describe them in detail and explain clearly exactly what is going on, but for this I fear someone will have to get John more interested in quantum gravity again...

Update: I should mention other tributes to TWF here, here, and here.

Posted in Uncategorized | 19 Comments

Short Book Reviews

There’s now a fairly long list of books that I’ve found worthwhile recently and wanted to write about here, making it unlikely I’ll have time to write in detail about them. Instead, here are some short reviews:

  • More than seven years ago I wrote very critically here about Leonard Susskind’s The Cosmic Landscape. That book struck me as embodying the worst aspects of where string theory has ended up, promoting to the public in a high-profile way a dangerously pseudo-scientific excuse for string theory’s failure. Debate about the anthropic landscape has now been going on for nearly a decade, with mixed results. This ideology still has its believers and gets taken seriously, but I think it’s fair to say that interest has dwindled as it has become clear that no one has a serious idea about how to use it to make any kind of scientific prediction. For both proponents and opponents, it’s now old news, hard to get interested in talking about, especially since the lack of any evidence (pro or con, now or forever) seems guaranteed.

    Luckily for all of us, Susskind has moved on to much more promising topics. He has a new popular book out which is quite good, entitled The Theoretical Minimum. It’s basically a textbook on classical mechanics, written at a level appropriate for someone who has had a calculus class, but not necessarily any more physics or mathematics than that. The style is breezy and colloquial, with lots of nice explanations of some of the basic concepts of physics. It’s wonderful to see Poisson brackets appearing and nicely explained in a popular book destined to be displayed at bookstores everywhere.

    The book is based on one of several series of lectures given by Susskind as part of Stanford University’s Continuing Studies program, all of which are available on video at YouTube (see here for a list). The writing of the book is a joint effort of Susskind and George Hrabovsky, who started the project of turning Susskind’s lectures into book form.

  • While selling popular books with equations in them is a new concept in the US, it’s not so unusual in France. When last in Paris I picked up a copy in a non-scientific bookstore of Cédric Villani’s Théorème Vivant, which includes equations I can’t even follow. It’s basically a fascinating journal he kept during 2008-2011, focused on a problem he was working on during this period with his collaborator Clément Mouhot. It provides a good picture of what it’s like to be a top-class analyst working on a difficult problem. During this period, Villani was very much aware that he might be a candidate for a Fields Medal, which provided some motivation for him to push forward. If you want to know what it’s like to really want a Fields Medal, to work hard to get it and succeed, this is the book for you.

    A large part of this work took place during a year when Villani was holed up at the Institute in Princeton, and this is described in detail. Difficult working conditions included lack of access to good bread or cheese, a major reason Villani turned down efforts by Princeton to keep him there and returned to France, where he is now Director of the Institut Henri Poincaré in Paris. He also maintains a blog here where you can keep up with his activities.

  • Steven Weinberg’s Lectures on Quantum Mechanics is based on graduate-level quantum mechanics courses he has taught over the years. It covers concisely and well most of the standard topics that are make up a quantum mechanics course at this level (this is definitely not a beginning QM book). It does differ from most QM books though in providing a high-level and serious discussion of the question of interpretations of quantum mechanics, a topic about which Weinberg has thought deeply. After explaining carefully the issues, he ends up with:

    My own conclusion (not universally shared) is that today there is no interpretation of quantum mechanics that does not have serious flaws, and that we ought to take seriously the possibility of finding some more satisfactory other theory, to which quantum mechanics is merely a good approximation

    I fear I’m with those who don’t share this conclusion, but his arguments are well-worth paying attention to. For someone else who has thought deeply about all this, and come to conclusions closer to my own less well-considered ones, see this recent blog entry by John Preskill (don’t miss the discussion in the comments).

    The book ends with a modern but very short chapter on entanglement, Bell inequalities and quantum computation.

  • I’ve recently gotten a copy of a wonderful new quantum field theory textbook, Anthony Duncan’s The Conceptual Framework of Quantum Field Theory. It’s a long, fat book, packed with material that doesn’t appear in other QFT books. Most modern QFT books stay focused on the goal of writing down the Standard Model and giving the details of how to do perturbative calculations in the theory. Duncan instead devotes most of the book to a careful investigation of the basic issues raised when one works with a theory of quantized fields and tries to understand exactly how such objects are connected to the particle states and their scattering that we see in the real world.

    Besides the close attention to thorny conceptual problems normally glossed over, Duncan also gives a long discussion of the early history of the subject, a time in which the conceptual problems were being thought about by the leading figures in the field. Probably every one who has learned quantum field theory in one way or another could benefit by going through this book and picking up some insight into all the questions that were ignored in whatever other book they learned the subject from.

  • Finally, for those already fluent in quantum mechanics and quantum field theory, there is Mikhail Shifman’s Advanced Topics in Quantum Field Theory, published last year. It concentrates on methods for understanding the non-perturbative behavior of QFTs, especially gauge theories. A major topic is semi-classical methods and the art of extracting non-perturbative information about the QFT from interesting solutions to the classical equations of motions (e.g. instantons and solitons). The latter part of the book focuses on supersymmetric theories, where supersymmetry can be used to get further insight into the non-perturbative behavior. In recent years, much of the research interest in SUSY has moved away from the idea of using it for Beyond Standard Model physics (a trend likely to accelerate with the failure of SUSY to show up at the LHC), and towards thinking of it as a tool for studying QFTs. Shifman’s book gives a good introduction to the basic examples of how this works.

Update: Lev Okun sent me a copy of his ABC of Physics: A very brief guide. It’s a remarkable document, managing to cover all of fundamental physics in about 120 pages, from the simplest topics in high school physics to the Higgs and superstring theory (the latter treated with appropriate skepticism). If you want an overview of the subject that is as short as possible, this is for you.

Posted in Book Reviews | 16 Comments

The Anatomy of a Scientific Gossip

The University of Birmingham has put out a press release today about new research by their computer scientists, on the topic of the spread of gossip about the Higgs via Twitter. This is all based on an arXiv paper, The Anatomy of a Scientific Gossip, and has been picked up by New Scientist, Phys.org, and Aidan Randle-Conde.

Since I’ve been designated as one of the Best Physics Gossips on this topic:

If the Higgs boson was a dead celebrity, Woit would be your TMZ — first to the scene, first to break it, and have it be right.

I think I should perhaps comment on what this research actually shows. From what I can tell, it just provides evidence that Twitter is a worthless swamp full of people who have no idea what they are doing “re-tweeting” stale information to each other. Getting their information from tweets, according to these researchers things began with

Period I: Before the announcement on 2nd July, there were some rumors about the discovery of a Higgs-like boson at Tevatron;

and went on from there. They start looking at the data only from July 1 on.

Looking back at what actually happened, I started posting about the coming LHC results on June 17 (the Tevatron results were a side-show). On June 18th, Matt Strassler had the story, accusing me of ruining the CMS and ATLAS blind analyses, for top-secret reasons that could not be revealed. June 19th saw a New York Times story about this with a link to my blog entry and by June 20th Sean Carroll and Jennifer Ouellette were writing about #HiggsRumors being a “Trending Topic” on Twitter.

I suppose it’s true that a couple weeks later there were about a million tweets about this, but why would you conceivably want to look at any of them? While I was writing this blog posting, an incoming e-mail from Twitter popped up on my screen.

We’ve missed you on Twitter!

So much is happening right now on Twitter, and building a great timeline is the way to really enjoy the service. Get to Twitter and start building a timeline that reflects you and your interests, you’ll see how quickly Twitter becomes an invaluable part of your life.

I don’t think so…

Update: At his blog, Matt explains that he wasn’t accusing me of anything. It was CMS and ATLAS physicists who, by telling me me about the results after unblinding, were guilty of ruining the blinded analyses for still top-secret reasons.

Posted in Uncategorized | 12 Comments

CERN Briefing Book

This year the US and European HEP communities are engaging in exercises designed to put together plans for the future. In the US it’s Snowmass 2013, leading up to a big meeting in Minneapolis this summer. This past week has seen preliminary meetings at Irvine to discuss future prospects for experimental study of SUSY and other BSM ideas, and at Princeton for discussion of future prospects for study of the Higgs.

Over in Europe, there is a plan to update the 2006 European strategy for particle physics, This will officially take place in May/June, based on a document to be finalized by the CERN Council in March. Next week in Erice there will be a meeting to draft this document. To prepare for this, there was an open symposium last September, leading to the preparation of a briefing book, now available here.

The briefing book is a very interesting 220 page document covering in up-to-date detail the current experimental situation and future prospects, for all areas of HEP. One big issue is the Higgs: now that its mass is known, what can be learned about it using some new machine (a “Higgs factory”) beyond what can be learned from the LHC? As far as prospects for a new, higher energy machine, the document describes the possibilities, but no decision about such a thing is likely to be made until after results become available from seeing the LHC run at 13 TeV starting in 2015.

Posted in Experimental HEP News | 7 Comments

What *Should* We Be Worried About?

Back from vacation today, so regular blogging likely to resume. Will start with something quick, a link to material that was posted today.

The Edge web-site annual question feature is out today, with this year’s question What *Should* We Be Worried About?. I wrote something about the “Nightmare Scenario” that HEP is facing if the LHC finds a Standard Model Higgs and nothing else.

Others addressed the same issue, with Lisa Randall writing:

In my specific field of particle physics, everyone is worried. I don’t say that lightly. I’ve been to two conferences within the last week where the future was a major topic of discussion and I’m at another one where it’s on the agenda.

Her specific concern is motivated by her interest in large extra-dimensional theories, for which no evidence has shown up so far at the LHC. If the extra jump by a factor of 6.5/4 in energy that will arrive in 2015 after repairs still shows nothing, this may be the end of the line for such theories for a very long time. The prospects for a higher energy machine are problematic in terms of technology, as well as the political will to pay for them. The overselling of this that went on for many years pre-LHC won’t make it any easier to re-use these theories as an argument for building a new machine.

Amanda Gefter sees no reason to worry. Particle theorists will just move to making progress without experiment, through studying paradoxes of the current theory, with her final example for optimism the recent debate over the “firewall paradox”.

Carlo Rovelli’s contribution explains one problem with this: humans are very good at convincing themselves they have found some wonderful explanation of something (e.g. some resolution of a paradox, like the supposed SUSY solution to the hierarchy problem), when reality actually involves something quite a bit more subtle and unexpected:

A number of my colleagues in theoretical physics have spent their life studying a possible symmetry of nature called “supersymmetry”. Experiments in laboratories like Geneva’s CERN seem now to be pointing more towards the absence than the presence of this symmetry. I have seen lost stares in the eyes of some colleagues: “Could it be?”, how dare Nature not confirm to our imagination?

By the way, when I was in Paris last week I picked up a copy of Rovelli’s wonderful short book that has just come out in France Et si le temps n’existait pas?. It begins with a personal history of how he got into science, from a background in the 1970s disillusion following the flowering of radical ideas in the 1960, a story I found quite interesting, since I’m of the same generation as him. There’s also the story of how some of the ideas of loop quantum gravity developed, and some speculative material about time. Definitely worth looking for if you read French and are interested in these topics.

Posted in Uncategorized | 59 Comments

East Coast versus West Coast

Back when I was a student I remember learning that there were two possible sign conventions to use for the Minkowski space metric: the “East coast” one, mostly + signs, favored by relativists and Steven Weinberg, and the “West coast” one, mostly – signs, which was the one in Bjorken and Drell. Then, as now, the big centers of influence in US particle theory were on the coasts: Princeton and Harvard on the East coast, Berkeley, Stanford and Caltech on the West (these days one might want to add the KITP at Santa Barbara). I was educated by the Eastern establishment (who sometimes used the “West coast” sign convention), where gauge theory and the new standard model were the order of the day. The West coast, with its remaining pockets of S-matrix theorists and authors of popular books like “The Tao of Physics” and “The Dancing Wu Li Masters”, was considered to be rather behind the times and a bit soft in the head, perhaps attributable to too much time spent in hot tubs at Esalen and too much use of the agricultural products of Mendocino and Humboldt county.

Remarkably, these days the two coasts remain dominant, with US Fundamental Physics Prizes going only to theorists living within a relatively short drive to an ocean beach. An East coast – West coast disjunction in interests remains, one that it remains tempting to speculate may have something to do with California’s main cash crop. For quite a few years the West coast has been the center of multiverse-mania, and I’ve often wondered what the theorists there would turn to when that lost its “new cutting-edge theory” shine.

It remains unclear what will happen in the long-term, but there’s now a new hot topic in California these past few months. It was the subject a few weeks ago of a workshop (AKA “brain-storming session”) with 50 or so in attendance at Stanford, and is being described by Raphael Bousso (across the Bay at Berkeley) as “this is probably the most exciting thing that’s happened to me since I entered physics.” A full-blown conference is rumoured for April.

LA-based science writer Jennifer Ouellette does a characteristically excellent job of covering the story, starting here by explaining the appeal of the subject (as well as the problem with explaining it):

To include every last detail, the piece would have had to be a good 6000 words long, and frankly, very few general readers would care to slog through all the gory details. So why even bother to try, if one can’t be comprehensive? Because FIREWALLS! That’s why! Seriously, how cool is this concept? There’s nothing more crowd-pleasing than death by black hole (just ask Neil de Grasse Tyson) and now there could be more than one way to die. Spaghetiffication, or incineration? Take your pick.

Another version of that post, which includes an excellent set of references is here. For her full treatment, see the version at Simons Science News.

All of this started with “AMPS” a July paper by four Santa Barbara physicists that already has 25 citations and counting (although of the three papers on the topic by Susskind, one is already “Withdrawn because the author no longer thinks it is correct”). For more on the topic, you can try Bousso’s Strings 2012 talk, blog entries by Polchinski at Cosmic Variance, Caltech’s John Preskill at Quantum Frontiers, Santa Barbara’s Aron Wall at his Physics and Theology blog, or Robert Helling here. I haven’t myself tried reading these papers, partly because I strongly suspect that I’d end up with the same reaction as Robert:

Now, of course I had to read (some of) the papers and I have to say that I am confused. I admit, I did not get the point. Even more, I cannot understand a large part of the discussion. There is a lot of prose and very little formulas and I have failed to translate the prose to formulas or hard facts for myself. Many of the statements taken at face value do not make sense to me but on the other hand, I know the authors to be extremely clever people and thus the problem is most likely on my end.

The problem may be that Robert isn’t in California, but, like me, is too far East. Someone else brought up in the East coast tradition (and now so far East he has kind of fallen off the edge…) is Lubos Motl, whose reaction to this topic is that the whole thing is Peter Woit’s fault:

AMPS isn’t as bad or as obviously wrong as “gravity as an entropic force” but it’s still wrong and what’s worse about it is that it is pushed by some of the names that are more famous than Erik Verlinde’s name. None of those bad apples would really destroy an otherwise healthy research community but the main problem I see is that the bad apples can no longer be efficiently wrestled with. Or it’s not happening. It doesn’t look like anyone cares at all. Instead, it seems to me that people are defending their subjective and increasingly non-quantitative (and often downright wrong) ideas and these people’s connectedness to the journalists and other folks outside the research community itself and the related populism – instead of the scientific evaluation by those who actually understand the things as experts – have become the key determinants of success.

Will firewall-fever spread from the West coast, or is it just a flash in the pan? Time will tell…

On a personal note, blogging may be lighter than usual for the next couple weeks or so, as I travel further East for a vacation in Spain, Portugal and Paris.

Update: Bee’s comment reminds me that I had planned to include a link to George Musser’s SciAm piece about this.

Posted in Uncategorized | 35 Comments

Various Links

  • This week there’s a conference in Oxford I’d have loved to have been at. Slides from some of the talks are already posted here. The conference is in honor of Graeme Segal’s 70th birthday. Happy Birthday Graeme!
  • Physics Today has a very interesting piece about the current state of HEP posted today by Burton Richter, focused on the topic of Should the US join CERN?. On the ILC, with Japan the prospective location, he takes the point of view that it’s most likely to be interesting as a Higgs factory, so a 250 GeV machine will suffice:

    The ongoing International Linear Collider (ILC) program is aimed at building and running a 500-GeV machine by 2020. A new ILC design study is scheduled for release in a few months, but by 2020 the LHC should have delivered enough cumulative output to make anything the ILC can produce irrelevant beyond what its lower-energy Higgs-factory option can do.

    Besides this, at the energy frontier the LHC is the only game in town, with HL-LHC and HE-LHC challenging and expensive projects that will dominate the future of the subject. If the US wants to participate, Richter argues that a new, closer formal relationship is needed. The politics here is likely to be tricky, with the US Congress not exactly keen on spending money outside the US, through an organization where the US has little influence.

    About the future he’s most worried about the too high cost of getting to higher energy permanently delivering us into the hands of multiverse mania:

    If our only theory of everything comes down to the landscape model, where we are only one of a zillion universes with the parameters we see as only a statistical accident necessary for life, the game is over. I hope not.

  • One of the landscapeologists whose influence Richter is worried about is Joe Polchinski at Santa Barbara. Courtesy of the Milner prize competition, Polchinski is in line for about $3 million more influence if he beats out his two competitors next March, and UCSB has a press release about this. The press release explains that Polchinski is being rewarded for his discovery of “one of the basic building blocks of space time”

    According to the award citation, the Physics Frontier Prize recognizes Polchinski’s broad contributions to fundamental physics, most notably the discovery of D-branes. These have been shown to provide the atomic structure of black holes, predicted long ago by Stephen Hawking, and, as such, are one of the basic building blocks of spacetime.

    One goal of the Milner prize is to raise the profile of work that is not Nobel-worthy because it isn’t testable science, by creating a bigger prize for it than the Nobel. Unfortunately I think one side-effect of this is to blur the distinction between things we have evidence for and those that are pure speculation (with “D-branes=basic building block of spacetime” the latter, being promoted to the public as if it were the former).

  • Steven Weinberg’s graduate level text on QM, Lectures on Quantum Mechanics, is now out, and I’m very much looking forward to getting a copy soon.
  • The Higgs boson is Time Magazine’s Particle of the Year, Fabiola Gianotti runner up for Person of the Year.
  • I recently read Benoit Mandelbrot’s posthumously published autobiography The Fractalist: Memoir of a Scientific Maverick, but don’t really have the time or interest to write a review here. Mandelbrot has an unusual life-story, starting with being hidden in war-time France to escape the Nazis.

    The thing that struck me most about the book though was that I had always assumed he was an academic outsider, but the true story is quite different. His family was academic mathematics royalty, with uncle Szolem Mandelbrojt a highly influential French mathematician at the College de France guiding him closely. A big theme of the book is Mandelbrot’s detailed explanation of the debates involved at each stage of his life over what would be his best next career move. There’s more about this than about the mathematics.

    Another reason not to write a review is that I can point to two interesting ones already out there. The Wall Street Journal got Stephen Wolfram to write one, see here, and American Scientist has one by Brian Hayes here. Hayes isn’t exactly kind to Mandelbrot, emphasizing his egotism and desire for recognition:

    Mandelbrot begins one chapter of his memoir with the declaration: “A blessing throughout life: I never wonder who I am.” He is untroubled by doubts or regrets, and untainted by false humility. In these pages you will find no self-effacing disclaimers about standing on the shoulders of giants; if Mandelbrot has seen a little farther, it is because he’s taller. From an early age his scientific hero was Johannes Kepler, and his goal in life was to accomplish something worthy of a modern Kepler, overthrowing an outworn orthodoxy. By his own account, he succeeded brilliantly, with quite a number of “Kepler moments.” (As far as I know, Kepler himself had only one.)

  • For another, mathematically more interesting, discussion of a recently departed mathematician with an amazing career, see the AMS Notices article on I. M. Gelfand. Gelfand’s career and influence is a huge topic, so this is just Part I.
  • A significant new advance in representation theory is explained nicely by its authors here in terms of the general philosophy of representation theory laid out by Gelfand. A standard topic in representation theory courses is to classify the unitary representations of compact semi-simple Lie groups (highest weight theory), but the question of what happens in the non-compact case is much, much more difficult and still open, with one problem that the representations are infinite-dimensional. This latest paper reports “a finite algorithm for computing the set of irreducible unitary representations of a real reductive group G” with the authors describing their result as follows”

    The third step in Gelfand’s program is to describe all of the irreducible
    unitary representations of G. This is the problem of “finding the unitary dual”

    G^u =def {equiv. classes of irr. unitary representations of G}

    It is this problem for which we offer a solution (for real reductive G) in this paper. It is far from a completely satisfactory solution for Gelfand’s program; for of course what Gelfand’s program asks is that one should be able to answer interesting questions about all irreducible unitary representations. (Then these answers can be assembled into answers to the questions about the reducible representation π, and finally translated into answers to the original questions about the topological space X on which G acts.) We offer not a list of unitary representations but a method to calculate the list. To answer general questions about unitary representations in this way, one would need to study how the questions interact with our algorithm.

    All of which is to say that we may continue to write papers after this one.

    This sort of representation theory is ferociously technical, with many papers in the subject appearing to have been written only to be read by the very small number of people expert in all these technicalities. This document is surprisingly different, starting off with an accessible introduction to the subject, and then devoting a lot of space to a careful, readable exposition of the details of the necessary technicalities. The subject is still ferociously complex and technical, but this paper gives one a fighting chance to actually understand what is going on if one has the time and energy to read one’s way through it. An admirable and unusual choice of how to write a modern math paper.

Update: A commenter points out a nice article that just appeared in Scientific American, Strange and Stringy, by Subir Sachdev, who explains some recent ideas about using dualities to understand certain condensed matter phenomena.

Posted in Uncategorized | 25 Comments

Quantum Mechanics Fall Class Lecture Notes

Classes are over for the semester, and I’ve put together the lecture notes for my undergraduate “Quantum Mechanics for Mathematicians” course, which are available here.

The idea for the course was to try and explain the basics of quantum mechanics, from the point of view of unitary representations of Lie groups. While this is a rather advanced topic, I made an effort to do things quite concretely and start at the most basic level (the only prerequisite for the course was calculus and linear algebra). I hope the notes will be useful both to mathematicians trying to learn something about quantum mechanics as well as to physicists who would like to better understand the mathematics behind the way symmetry principles get used in the subject.

More to come next semester. The initial plan is to start with the fermionic oscillator, move on to path integrals, then relativity, the Dirac equation, and U(1) gauge theory (E and M), ending up with some very basic quantum field theory (non-interacting fields). We’ll see how that turns out and at what point I run out of energy and stop writing.

Any corrections, comments or suggestions about how to improve these notes are most welcome.

Update: Thanks to all for comments, I’m quite pleased to see how many people have been looking at these notes (6600 downloads and counting!). They’ve also made an appearance in surprising places, including here.

Posted in Uncategorized | 38 Comments

Arkani-Hamed on Naturalness

For the latest SUSY enthusiast take on the implications of what the LHC has been (not) seeing, your best bet might be yesterday’s talk at the KITP by Nima Arkani-Hamed on Naturalness. An hour and 40 minutes, no slides, nothing much on the blackboard, just him talking about how he now sees things. Some high points:

  • If the Higgs turns out to have spin two, he’ll quit physics.
  • If the Higgs turns out to be a techni-dilaton, he’ll kill himself.
  • At this point, a natural theory would have to be rather baroque, so he favors abandoning naturalness in favor of simplicity.
  • The simplest thing is the Standard Model, but that requires too much fine-tuning. He won’t completely abandon naturalness: one part in a million fine-tuning is fine, but the SM fine-tuning problem isn’t. This is the point where he loses me (going from the SM to the vastly more complicated SUSY theories with the needed SUSY breaking seems to me not close to being worth the supposed improvement in the fine-tuning).
  • He complains that “Some BSM theorists are giving our field a bad name” by repeatedly making SUSY predictions that turn out to be wrong and changing their story.
  • He’s not one of those: he still favors split SUSY, and has since 2004.
  • Split SUSY makes a falsifiable prediction: no Higgs gamma-gamma excess. This is of course the same prediction as the Standard Model.
  • In his favored version of split SUSY, all SUSY partners are much too heavy to ever be observable except the wino, bino and gluino. He had a lot to say about what observing these would tell us, but not much about what the implications are of not seeing them in the LHC 8 TeV run. Would this just mean “surely they’ll show up at 13 TeV”? Is seeing nothing at 8 TeV consistent with split SUSY? What about seeing nothing at 13 TeV?

In any case, giving up on SUSY is definitely not on the agenda as far as he’s concerned.

Posted in Uncategorized | 23 Comments